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PREFACE

Recent progress in the material sciences has led to an increasing amount of interest in the role of textures
for the behaviour of materials and in the mechanisms controlling the texture formation. This development
was supported by a rather powerfull development taking place in the area of texture studies itself: Besides
the usual, more qualitative, characterization of a texture by pole figures a fully quantitative description by
a three-dimensional orientation distribution function (ODF) has been increasingly applied.

There are two sides to the problem of quantitative representation of textures. One involves the mathematical
technique associated with the acquisition of an ODF, and its transforms, from the experimental data,
whereas the other concerns the methods of a rational description and interpretation of an ODF.

The first side can be considered from the practical point of view as experimental-data processing which is
accomplished by a computer and is sort of a continuation of the measurement itself. Much attention has
been paid to this problem, particulary by Bunge, who has written up achievements in this field in this
extensive monograph /1/ and in conference proceedings /2/. There is also avaiable a rather detailed presen-
tation of a system of subroutines written in Fortran /3/ which allows standard computations to be made
without having to go into the mathematical details of the method.

The second side of the problem is the concern of the present study which contains information facilitating
the analysis of an ODF obtained by calculative methods. The ODF defines the frequency of occurrence of
a given orientation in a sample and is presented in a three-dimensional space formed by the three para-
meters describing an orientation, usually by the three Euler angles. For the purpose of approximate des-
cription and interpretation of the ODF, “ideal orientations” or “components” are often identified and
crystallographic relationships between the components determined (e. g. twin relationships). This allows
simple comparison to mathematical or physical models.

The present “Tables” give the most important notions and auxiliary data used in texture analysis on the
basis of ODF’s and of pole figures. The largest part of this work is tabulated data presenting numerical
relationships between Miller indeces, Euler angles and pole figure positions. Such data is very important

and helpful in almost all texture investigations. The lack of a generally accessible collection of such data
has frequently made it necessary to calculate appropriate tabular values separately as appendices of publicat-
ions.

The tables are limited to cubic crystal symmetry. They are further limited to orientations characterized by
Miller indices with 0 < h, k, 1, u, v, w < 15 or < 12, respectively. But even then nearly 15000 different

orientations had to be considered. The authors regret that the use of the tables is not as simple as e.g. the
use of logarithm tables. They hope, however, that — with the aid of the explanations before each table —

they will quickly become a useful tool for researchers in the area of texture analysis.

Especially emphasized shall also be the first part of this book. In a rather complete but also easily
accessible form it contains a detailed review of the different ways of representing orientation distributions
and orientation relationships including the most important mathematical derivations in this filed. Particular-
ly the symmetry relations in the Euler angle space — hitherto a little known although rather important

area — have been thoroughly discussed. In order to achieve an optimum understandig also original contribut-
ions not published elsewhere are included into this review.

The authors are deeply indebted to Dip.-Ing. K.H. Virnich for his continuous assistance and for numerous
valuable discussions and contributions. They acknowledge the understanding shown for this work by

Prof. W. Bunk, Koéln, and Prof. Truszkowski, Krakow. They like to express their gratitude to Mrs.

V. Boldin and to the staff of the computer center of the RWTH Aachen and of the DFVLR, Kbln, for
valuable aid in calculating and printing the tables.
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A REVIEW OF THE REPRESENTATION OF ORIENTATIONS AND
ORIENTATION DISTRIBUTIONS

1. INTRODUCTION

One of the most important quantities describing the internal structure of a polycrystalline material is the
distrubtion of the orientations of its crystallites. This orientation distribution is commonly denoted as
texture. The accepted practice is to speak of a texture when the orientation distribution is not a random
one.

Texture analysis is based on a simple geometrical model in which the polycrystalline aggregate is represent-
ed by rectangular right-handed reference frames associated with the sample and with the crystallographic
lattice of the crystallites. The axes of the sample reference system are chosen mostly in accordance with

the external shape of the sample or, if its orientation distribution is symmetrical, in accordance with this
symmetry. E.g. in the case of a rolled sheet, usually the rolling direction (RD), the transverse direction (TD)
and the normal direction (ND) are used. The axes of the crystal reference systems are chosen parallel to
(mostly low indiced) crystallographic directions, e.g. in the case of cubic symmetry parallel to the three
edges of the cubic cell [100], {010] and [001], respectively. These frames are thought to be brought to a
common origin at which also the center of point symmetry is located.

The fundamental notion when describing textures is the orientation of a crystallite. It is defined as the
position of the reference frame of the crystallite relative to that of the sample, and thus can be expressed
by the rotation of one frame into the other. Thus the notions and relationships used for describing tex-
tures are based on the properties of rotations and can be established by employing vectorial and matrix
calculus. Since for the determination of a rotation 3 parameters are needed, an orientation can be represent-
ed by a point in a 3-dimensional “orientation space” formed by the 3 orientation parameters as coordinates.
In quantitative texture analysis mostly the 3 Euler angles ¢;, ¢, v, are chosen as orientation parameters.

Another, rather illustrative way of representing an orientation is to consider a unit sphere fixed with
respect to the sample frame, and to indicate on its surface the directions normal to a set of symmetrically
equivalent low-indiced crystallographic planes (“‘poles”). The common practice is to consider the stereo-
graphic projection of this unit sphere (“pole figure”) and to describe the positions of the poles by means
of the spherical coordinates a, 8. Frequently employed in analyzing and interpreting textures is also a des-
cription of orientations by assigning crystallographic indices (HKL) [UVW] to a certain plane of the sample
and to a certain direction within this plane. E.g. in the case of a rolled sheed, (HKL) [UVW] commonly
denotes the rolling plane and the rolling direction.

A texture is quantitatively described by its orientation distribution function (“‘ODF”). This is a density
function in the three-dimensional orientation space and represents the frequency of a certain orientation

as function of the 3 orientation parameters. It is obtained by numerical techniques from experimental data,
which usually are pole figures, i.e. two-dimensional distribution functions of the poles of specific lattice
planes. The reason for chosing this type of data is that the pole of a reflecting plane (in contrast to the
angle of rotation around this pole) can be obtained rather easily by simple Debye-Scherrer X-ray technique.
In practice, often the pole figures themselves (i.e. without calculaiing an ODF) are used to characterize a
texture. They .do not allow a complete recognition of the orientation distribution, but give some informat-
ion about its main features, e.g. allow the identification of the orientations of the maxima of the ODF.

The following derivations are limited to cubic crystals. Furthermore, the sample geometry is mostly con-
sidered to be orthorhombic. In order to have something specific in mind, the samples will be then reffered
to as rolled sheets. To a certain extent, however, also monoclinic samples {e.g. sheets after uni-directional
rolling) or triclinic samples (e.g. rolled single crystals) are considered. Fiber textures are not especially
discussed since they are thoroughly described in /1/ and can be presented unequivocally and mostly

more simply by inverse pole figures.
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2. 'REPRESENTATION OF AN ORIENTATION
2.1 Definition of Orientation

In all what follows, the base vectors §;, $,, 33 of the reference frame S associated with the sample are
chosen parallel to RD, TD and ND and the base vectors &;, &, &; of the frame C associated with a crystal
lattice are chosen parallel to the crystallographic directions [100], [010] and [001]. The crystallite orien-
tation is defined as the rotation which transforms the sample reference frame S into that of the crystallite
C.

The base vectors of the reference frames are related through the linear relationships
> > > >
Ci = 81181 + 81283 + £139;
> > > >
C2 = 82151 + £228; + 82353 1)
> _ > > >
C3 = 83151 F 83282 + ga3S3
In matrix notation the transformation (1) has the form

>
c

1 31 gin 812 813
o) =s 5 with g = 81 82 L2 )]
& A €31 Ex: 833

or abbreviated {C} =g + {S}. The relationship (1) and thus the matrix g describe the rotation of the frame
S into frame C. Hence, according to the above definition of orientation, defines the orientation in matrix
representation.

Since the 3 vectors §>i as well as, the 3 vectors 31 are orthogonal to each other and since, in addition, the

> > :
8i, Cj are supposed to be unity vectors, vue has for the scalar products

1fori=j

> > > >
Si*Sjorcieci=26j= 3)
P {o for i # j

With this, one obtains for the scalar products
G v %= g 4)

The matrix elements gy are the cosines of the angles between the base vectors ¢; and gk' The elements in
the rows gy (k = 1, 2, 3) are the direction cosines of the Ei vectors in the S system, whereas the elements
in the columns gy (i = 1, 2, 3) are the direction cosines of the 's)i vectors in the C system.

The orthogonality of the frames expressed by Eq. (3) results in six independent conditions for elements
gik- They can be written in the form

3
2 gk gk = 8jj (%)
k=1

and are obtained from Egs. (1) and (3) by taking the appropriate scalar products & Ej. The left-hand side
of this equation represents the matrix element of the product of the matrix g and the transposed matrix
gl (which is defined by gL = 8nm)"

3 3
cgD. = 2 gugl = K. 6
& 8)y 2 Bik By j . 8ik 8k (6)
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The right hand side represents the unity matrix E so that Eq. (5) can be written as

1 0 o
g-gTzE:. 0 1 0 (7)
0 0 1

Since the inverse matrix g™ is defined by the equatibn g - g'! = E, the orthogonality conditions are
identical with statement that here the inverse matrix g' (which describes the transformation {S}= g™ {C})
is equal to the transposed matrix gT.

The coordinates (X, Vs, Z5) and (X¢, Ye, Z¢) of any vector R in the two reference frames S and C are
transformed by the same matrices g and g as the base vectors. With

> > > > > >
R = XcCy + Yo + 2cC3 = X851 + Y82 + 253 (8)

one obtains by scalar multiplication in succession by &1, Gz, G and considering (4):

Xc Xs Xg X
Ye ] =8 ¥ ] vs ] =" | v ©
ZC ZS Zs ZC

Because of the six orthogonality conditions (5) between the nine matrix elements gg, the number of
independent angles defining a rotation g becomes reduced from nine to three. Hence, the description of an
orientation requires only 3 angles which are called orientation parameters. They may be chosen in different
ways some of them will now be discussed.

2.2. Description of an Orientation by the Miller Indices (HKL) [UVW]

A method rather frequently used for describing an orientation is to indicate rolling plane and rolling
direction by the Miller indices (HKL) [UVW]. They have the advantage of directly giving an insight into
the crystallographic nature of the orientation.

The indices (HKL) are assigned to the normal direction 3, of the sheet plane and [UVW] to the rolling
direction 3;. They define the direction cosines of the $; and §; vectors in the crystallite system C accord-
ing to

=—¢ +—¢, + — 10
83 M T M2 T M C3 (10)
U A" w
and -S)_[ = -h—I -51 + I—q. 32 + E’ -53 (].1)
where M =+/H? + K2 + L? and N =+/U? + V2 + W2,
The vector 3, in TD follows from these equations according to §, = (53X §,) or
KW - LV LU - HW HV - KU
I T T R v (2

i.e. the indices [QRS] of TD are given by
Q=KW - LV, R = LU — HW, S = HV — KU.
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Scalar multiplication of Egs. (10), (11) and (12) by ¢,, & and &; and consideration of (4) yields the matrix
of rotations defined by the indices (HKL) [UVW]

U KW-1V H
/ N MN M
V LU-HW K
HKL = = = 13
g ((HKL) [UVW]) N MN M (13)
W HV - KU L
N MN M

The introduction of the Miller indices reduces the number of nine quantities qg for the description of an
orientation to six and, at the same time,, reduces the number of the six orthogonality conditions between
the gy (Eq.(5)) to the following three relationships between the H, K, L, U, V, W:

(H/M)* + (K/M)* + (L/M)* = 1
(U/N)* + (V/N)* + (W/N)* = 1 (14)
HU + KV + LW = 0,

2.3 Description of an Orientation by the Euler Angles ¢, ¢ ¢,

For the purpose of quantitative texture analysis the orientations are mostly described by the three Euler
angles ¢,, ¢, v, which lead to a simpler mathematical formalism than the other orientation parameters
being in use. Using Euler angles, the transformation of the sample frame S into the crystallite frame C
occurs by a set of three consecutive rotations (Fig. 1):

ND

oot

Fig. 1:
Definition of the Euler angles ¢y, ¢, ;.

1. A first rotation ¢, around the normal direction ND transforming the transverse direction TD and the
rolling direction RD into the new directions TD' and RD', respectively. ¢; has to have such a value that
RD' will be perpendicular to the plane formed by ND and [001].

2. A second rotation ¢ around the new direction RD' with ¢ having such a value that ND is transformed
into [001] (= ND') (and TD' into TD").

3. A third rotation ¢, around [001] (= ND') with ¢, having such a value that RD' is transformed into
[100] (and TD" into [0101).
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These 3 rotations can be expressed mathematically in the following way:
1. Rotation about 33 by the angle ¢, (55 = 83,3, =33, §; = $7) which corresponds to the transformation
{8} = g(@){S} (15)
cos ¢, sin gy O
with the rotation matrix g(y;) = — sin ¢; cosy¢; O
0 0 1

> > > > > N
2. about §; by the angle ¢ (53 — §3, 5, — 83, 81 = 31) i.e.

{s"} = g(9) -{s} (16)
where 1 0 0
g(o) = 0 cos ¢ sin ¢
0 -sing¢g cos¢
3. about 3'3' by the angle 9, (83 = C3, 85 = &3, 81, &))
ie. {C} = g(p) {8} (17)
where COS gy sin ¢, 0
g(p2) = | — sin g, cos ¢, 0
0 0 1

Successive elimination {S'} and {S"} from formulae (15), (16) and (17) gives the rotation matrix defined
by Euler angles,

{C} = g(wa) * g(9) * glvy) {S} = g1 ¢ ¥2) {S} (18)

which has the form:

COS ; COS Y, — sin ¢ sin y, cos ¢ Sin ¢; cos @, + COs @y sin @, cOs ¢ §in ¢, sin ¢
gl dpy) = ~COs, sin g, — sing; cosy, cosp  -siny; sing, + COsy; cOSy, cOSP  COS ¢, Sin @
sin ¢, sin ¢ -COS8 @, sin ¢ cos ¢
(19)

This matrix does not change if integer multiples of * 27 are added to the angles ¢,, ¢, v, or when this
set of angles is replaced by

W=mto, ¢°=—¢, ¢§f =7+, (20)

All orientations resulting from this transformations are called identically equivalent (c.f. Sec. 3.3).

2.4 Description of an Orientation by the Euler Angles y 6 ¢

In the literature aiso somewhat differently defined Euler angles are encountered /4/ which are denoted
¥, 0, ¢. Their definition differs from that given above in that the second rotation (by the angle 8) takes
place about the $,-axis instead of about the §,-axis (Fig. 2).
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Fig. 2:
Definition of the Euler angles v, 0, ¢.

The g(6) matrix in Eq. (16) then assumes a different form,

cos8 O - sin @
g(® = 0 1 0 21
sin 8 0 cos 6

After the change of notation for the angles in matrices g(¢;) and g(p;), and considering (18), we get

8@ - g@ e =8, 06,9 (22)
where
cos¢ cosf cos Y =sin¢ siny ' cos¢ cosb cosy +sing cosy ! -cos ¢ sin b
g(y,0,9¢) = -sing cosf cosy~cos¢ siny  -sing cos@ siny +cos ¢ cos Y - sin ¢ sin 6 (23)
sin@ cos Y sin @ sin Y ' cos ¢

There exist the following general relationships between the two types of Euler angles.

=Yt

TR

; 9=10; ¢2=¢~%. (24)

If one additionally considers cubic crystal symmetry and orthorhombic sample symmetry (Sec. 3.4) one
obtains

p=5-¥; 9=0; ¢ =2-0 (25)

[STE]

In Fig. 3 these relationships are illustrated in a section ¥, § = constant. One recognizes that these two
sets of parameters can be transformed into each other by a two-fold axis parallel to ¢ und 6, respectively.



$=const.

4’ Fig. 3:
9=const. Relationships between the angles ¢y, ¢, ¥y and {, 0, ¢.

2.5 Description of an Orientation by Rotational Coordinates v, w

The rotational coordinates characterize an orientation by a single axis and angle of a rotation which
transforms the S frame into C frame (Fig. 4). These coordinates have the advantage of being easy to

visualize, much easier than e.g. the Euler-coordinates which describe a set of three consecutive rotations.

The derivations of the expressions given in the following section can be found in /5/ and /6/.

ND
001 4

\

RD I . Fig. 4:
* Definition of the rotational coordinates (axis of rotation
100 ¥ = |9, y}, angle of rotation w).

In the following 9 and ¢ shall denote the spherical coordinates of the unit vector v which indicates the

axis of rotation and « shall be the angle of rotation around V. As can be recognized from Fig. 4, the

values of the spherical coordinates ¥ and y are equal in both reference frames S and C. That means that

the direction cosines vy, ¥, v; of the rotation axis v satisfy the condition
> > > -> > > >
V=g S Wy Sy Y V83 S WGyt tvpCy
R T . . . > > .
by scalar multiplication in succession by §, §, or §3 (c.f. Eq. (4)) one obtains

Vx Vx
wl =g | w

Ve, vz
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i.e. the rotation axes v are eigen-vectors of the matrix g. The angle of rotation w and the direction cosines
of the rotation axis v can be calculated from the elements gg of the matrix g in the following way

B1n T 822 T 83=1+2cosw

1 .
5 (823 — g32) = % sinw

1 (27)
3 (831 — g13) = vy sin w

I

1 .
5 (B12— 821) Vz SN w

The matrix expressed in terms of parameters 9, ¥, w in the transformation
{C}=g@ ¥, w) {8} =8 w) - {S} (28)
possesses the following form:
(1 - ) cosw + ¥ VyVy (1 —cosw) + v sinw VxVz (1 =~ cos w) +vy sinw
gV, w) = vy (1 —cosw) = vpsinw (1 —w) cosw + vy vz (1= cos W)+ vwsinw | (29)
vy (1-cosw) + sinw vy, (I-cosw)— % sinw  (1-¥) cosw + v
where
v =cosysind; w =sinysind; vy =cosd.

The matrix (29) does not change if integer multiples of * 27 are added to the angles ¢, ¥, w or when
this set of angles is replaced by

y=-9 Y=mn-29
Y =m+¢  orby Y=+ Y (30)
w'=w W= - w,

respectively.

2.6 Description of an Orientation by Pole Figures

In a pole figure an orientation is defined by the positions of the poles (X;Y;Z;)) of the symmetrically
equivalent lattice planes {XYZ}. These positions can be visualized as the intersection points of the normals
to these planes with the surface of a unit sphere which is bound to the S-frame (sample), It can graphical-
ly be represented on the stereographic projection of the unit sphere (,,pole figure’”) and numerically be
described by the spherical coordinates aj, 8;. Fig. 5a gives an example for the {001} poles of an arbitrary
oriented crystal. Fig. 5b indicates the projection of the intersection points into the equatorial plane and
Fig. 5c¢ shows for one pole the angles a; §; within this plane.

If R is the unit vector of the pole (X;Y;Z;) then, according to Eq. (8), it has the following components in
the sample’s frame S (i.e. in the pole figure) and in the crystallite’s frame C (i.f. also Fig. 5):

>
R; = (sin o cos B)§; + (sin g sin Bi)§2 + (cos ;)83

= 3 (4 & + ik, + Zi8). €l



*

a ‘b c

Fig. §:

Presentation of a {100}-pole figure. a) Position of a crystal in the center of the orientation sphere;
b) Projection of the cube half axes on the equatorial plane, ¢) {lOO}-pole figure and definition of
the spherical coordinates aj, g; of the pole i

Here the quantity P = \/;(3 + Y+ Z-z; has the same value for all symmetrically equivalent poles (X;YiZ;),
ie. it is independent of i. Scalar multiplications of Eq. (31) in succession by the three vectors $; and tak-
ing into consideration Eq. (4) yields the following transformation:

sin @; cos g 8n B Xj

. . 1
singg sinfi ) =5 | 82 82 8 Yi (32)
COS &4 813 823 833 Zj

It is to be recognized that here matrix gT = g'! appears.

~ This equation allows the matrix elements gy to be determined from the poles (X;Y;Z;) given by the angles

ay, Bi. If, for example, for the three {001} -poles
Xy =1, Yy =0, Z, =0 the coordinates a,, £,
X, =0, Y, =1, Z,
X3 =0, Y3 =0, Z3

0 the coordinates «;, §,

1 the coordinates a3, 3
have been found, Eq. (32) yields the following nine equations for the gj:
gi = sin o cos B,  gp = sing; sinfi; g = COS Q. ; (33)

Because of the six orthogonality conditions between the nine gy, it would suffice to consider only 3 angles
(two ; and one B; or vice versa), i.e. two poles only. In practice, however, it is better to use all poles and
to apply the orthogonality conditions as a control. Then, by equating the nine calculated gy with the ele-
ments of the matrix Eq. (19) (or Egs. (23), (29) or (13)), the three Euler angles (or any other three
orientation parameters) can be derived. Also here not all nine equations have to be solved, three independ-
ent equations would suffice. However, because of the multivalency of the trigonometric functions, some-
times five equations are necessary in order to fix also the signs of the angles *

Conversely, if the orientation g is given, the positions aj, §; of the poles (X;Y;Z;) in the pole figure can be
calculated from the gy. For example, the position aj, 8; of the pole (111) (i.e. X; =Y, =2, =1) of the
orientation (101) [121] are found from Egs. (13) and (32):

Often is it faster and more practical to derive the poles (X;YiZi) in a graphwal way, Such a method for obtamng the poles
from the Euler angles is described in Appendix I.
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This leads to sino; cos §; = — -—?;—; sin ay sinfB; = — 5; cosq; = —-\/—3:—, and thus to oy = 35,3,
g, = 215° 3.

2.7 Description of an Orientation by Inverse Pole Figures

The reference system of an inverse pole figure is the frame C associated with the crystal and the orien-
tation is defined by the directions of axes connected with the specimen. These axes are usually the axes
3,, 32, 33 parallel to RD, TD, ND. In analogy to Eq. (31) where the spherical coordinates o, B of a unit
vector R; parallel to the crystallographic axis_)(Xi, Y;Z;) have been considered in the system S, here the
spherical coordinates v;, 8; of a unit vector R; parallel to a sample axis §; in the coordinate system C must
be introduced

>
R;=§ =siny cos 8; ¢, + sinv; sin 8;c, + cos §icCs. (34)
According to Eq. (4) one obtains by scalar multiplication in succession by ¢y, G2, s
gii = siny; cos8j; g = sinyisindy;  gsi = cos . (35)

These expressions describe the elements of the orientation matrix g in terms of the positions of ND, TD,
RD in the inverse pole figure.

2.8 Relationships Between the Different Types of Orientation Parameters

Since all the above matrix representations of an orientation (Egs. (13), (19), (23), (29)) are equivalent, it
is possible to establish the relationships between the different types of orientation parameters by compar-
ing the different types of matrix elements, The most important ones of the resulting relationships are the
following:

For (p; ¢ 1) 2 (3 ¥ w) ' (36)

sin—(“'i sin 9 = sin 2
2 2

cos £ = cos = cos #ten
2 2 2

¥ =% (01 — ¢2)
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For (HKL) [UVW] = (¢; ¢ ¢;)

K
tg ¢ cosy, = i

_H
tg*ﬂz“k‘

LW
Cos$ 18 = XU — AV

For (HKL) [UVW] - (3 ¥ w)

gy = - WM = HN
g KN - HV + KU
1

Cosw=m(UM+LU—-HW+LN—NM)

1
cos & sin w = NV (KW — LV — VM).

For (HKL) [UVW] = o; §;

cos &, = T’lﬂ (HX; + KY; + LZ))

sin & cos f; = i’lﬁ (UX; + VY; + WZ)

sin o sin §; = 'P‘IM'N' [(KW— LV)X; + (LU= HW)Y; + (HV — KU) Z;]

For (¢, ¢ ¢2) > & Bi

cos aj = % (Xj siny, sin¢ + Yj cosy, sin ¢ + Z; cos ¢)

sin o cos B = % [X; (cos p; cos g, — sin ¢, sin g, cos @) — Y; (cos ¢, sin ¢, +
+ sin 1 COS @y COs @) + Z; sin p; sin @]

. ) 1 . . . .

sin o sin f; = P [X; (sin ¢, cos ¢, + cosy; sin@, cosP) ~ Y (siny, sin g, ~

— COS @y COS @,y COS @) — Z; cosy;y sin §)]

For (Y 6 ¢) Z (1 ¢ ¢2)

801='2’“l//
¢ =0
802=g‘¢~

(37

(38)

(39)

(40)

(41)
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3. THE ORIENTATION SPACE
3.1 Examples for Various Types of Orientation Spaces

The three parameters describing an orientation can be used as coordinates of a three dimensional orientation
space in which each point represents an orientation. Applying different types of orientation parameters and
coordinate systems, the orientation space can be formed in many ways.

In Fig. 6 use is made of the rotational coordinates ¥, Y, w. The direction of a radius vector R character-
izes the axis of rotation ¥ and its length the angle of rotation cw. If one further defines that radius vectors
with opposite direction characterize rotations with opposite sense (e.g. that vectors above the equatorial
plane characterize counter-clockwise and those below clockwise rotations), a sphere with a radius Ry = 7
will contain all possible orientations.

Fig. 6:
Presentation of a spherical orientation space with rotational
coordinates v, w.

In Fig. 7 the same parameters &, Y, w are applied in another form. The w-axis (from — 7 to + 7) is chosen
as cylinder-axis and the sections w = constant represent the stereographic projection of the axes of rotation
> . . . . . 1 v . . . .

V. This cylindrical orientation space has proved very useful for describing orientation relationships.

N,D
[
T
T Wi
)14 =~
o
.y
!
l E
<} LT D
T e
R
T
l\ Fig. 7:
:_—/ Presentation of a cylindrical orientation space will the rotational
: coordinates ¥, w.

Most widespread, however, is the use of the orientation space in which the Euler angles y;, ¢, ¢, form an
Cartesian coordinate system. To present an orientation in this Euler angle space it suffices to consider the
range
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H={0<¢; <2m 0<¢<m O0<y <2m} (42)

the so-called asymmetric unit (Fig. 8). This can be recognized in Fig. 5a where an orientation is character-
ized by a set of 3 points on the surface of the sphere. By the rotation ¢; around ND (from O to 2w) and
by the angle ¢ between ND and [001] (from O to m) the position of [001] is determined, whereas ¢, gives
the rotation around {001] (from O to 2 ).

P 12

=ains=
=il 7
/2K |||I-". / ) %
. s/
< (\L
s s
s e
< /
/ 4
T 7 //
]
Fig. 8: ,
Asymmetric unit H of the Euler angle space divided into the subspaces H
and H®.
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Fig. 9 Fig. 10:

Presentation of a cylindrical Euler angle space with Presentation of a cylindrical Euler angle space with
@1 as cylinder axis, The base corresponds to an in- v, as cylinder axis. The base corresponds to a pole
verse pole figure, figure.

Fig. 9 shows a cylindrical type of orientation space based also on the Euler angles ¢, ¢, y,. (For reasons
given in Sec. 3.3 only the section 0 < ¢;, ¢, g, < 7/2 is represented in the figure.) The cylinder axis is
put into the direction [001] and the base plane represents a stereographic projection of the ND’s thus
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corresponding to an inverse pole figure. As follows directly from the definition of the Euler angles, ¢ then
gives the pole distance and y, the azimuth of the ND, whereas y;, the rotation around ND, is plotted
parallel to the axis. It is often convenient to use this type of Euler angle space together with pole figure
considerations. It is possible, of course, to exchange the coordinates p; and ¢, (Fig. 10). Then an Euler
angle space is obtained which is fixed to the sample coordinate system and corresponds to the usual pole
figure.

3.2 Symmetrically Equivalent Orientations

If the crystal latrice and/or the specimen (i.e. the pole figure) contain symmetries, orientaticns which would
be different without these symmetries will become symmetrically equivalent. In the case of cubic crystal
symmetry, the symmetrically equivalent orientations are found by interchanging the six (equivalent) half
axes of the cube. A given half axis can assume six different positions and, for each of these positions by
rotation around this half axis, a second half axes four different positions. Under the supposition that only
right hand coordinate systems are considered, also the other half axes are determined when these two are
fixed so that 6 -+ 4 = 24 symmetrically equivalent orientations are obtained (If additionally also left hand
systems would be taken into account, alltogether 48 possibilities would arise).

In the case of a rolled polycrystalline sheet, the sample axes ND, TD and RD can be interchanged accord-
ing to the (orthorhombic) symmetry of rolling. E.g. + RD and — RD and, for each of these two positions,
also + ND and — ND can be interchanged. Since, considering again only right hand systems, the two TD-
half axes are then fixed so that here 4 symmetrically equivalent orientations are obtained, This shows up
also the symmetry of the 4 quadrants of the pole figure. Hence, for a rolled sheet of a cubic material,

all together 24 - 4 = 96 orientations are symmetrically equivalent.

These relationships shall now be looked at somewhat closer. Beside the unity element, the elements of
point symmetry for crystal and specimen are given by rotation axes and by an inversion. In the following
the symbols E and I shall denote the unity and inversion element, Li, an i-fold rotation axis parallel to the
direction a and T, a translation in direction of a. The here considered crystal symmetry given by the

Ge = m3m group of the cubic system has the symmetry elements I, Ly, L3, L3, ¥ For a sample ¢
symmetry given by the Gy = mmm group of the orthorhombic sysiem, one has as symmetry elements the
axes L%\JD’ wa and again the inversion 1.

The orientauons g¢ symmetrically equivalent to an orientation g are determined by the relation

g =88 g (43)
where gc and gy are the elemnents of the point symmetry groups G, and G, of the crystal and sample. Since
the application of an inversion element does not generate symmetrically equivalent orientations (it only

converts a lett-hand coordinate system into a right-hand one) and since the groups G; and G both cointain
an inversion I, one can disregard the inversions for our reasoning. It follows from Eq. (43):

gezlcgolzgolulzg.Ezg (44)

i.e. the groups G; and Gg can be thought to be replaced by subgroups G¢ and G not containing I. Thus
the here considered group mmim can be replaced by 222 and m3m by 432. The generating elements of the
group 432 are the rotation axes Lgo; and L3;;. Their combination leads to all the 24 symmetry elements **
listed in Table 3.2,

The L,, element is not necessary for the formation of the m3m group, but its consideration is convenient in the
deliberations. The three-fold axis can be replaced by another fourfold axis according to L3, = L4, « L, . The product
of a two-fold axis and the inversion gives a mirror plane P = IL?. From this it follows also that two two-fold axes result
in two mirror planes: L%+ L% = P, « Py.

** This remark see on page 16.
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Table 3.2: The 24 possible symmetry elements of the group 432. Column 1 contains the here applied
symbols for the symmetries and column 2 the corresponding matrix representation. Column 3
contains the positions for the orthogonal coordinate axes x, y, z after the symmetry operation
has been carried out.

1 2 3 1 2 3
1 00 0 0 -1
1 E 0 1 0 xyz 13 LIy 0-1 0 zZyX
0 0 1 -1 0 0
-1 0 0 0 0 1
2 L%, 01 0 XyzZ 14 L2, 0-1 0 z¥x
0 0-1 1 00
-1 0 0 0 0 1
3 L%, 0-1 0 %X§z 15 L&, 01 0 zyx
0 0 1 -1 0 0
1 00 0 0-1
4 L%, 0-1 0 x¥VzZ 16 L, 01 0 Zyx
0 0-1 1 0 0
010 -1 0 0
5 L3, 0 01 yzx 17 L2; 0 0-1 XZ§
1 0 0 0-1 0
0-1 0 1 00
6 L¥; 0 01 yzx 18 L%, 0 0-1 xzZy
-1 0 0 010
0-1 0 . 1 0 0 _
7 Li; 0 0-1 §Zx 19 Ligo 0 0 1 Xz¥
1 00 0-1 0
01 0 -1 00
8 L3, 0 0-1 yZIX 20 L2, 0 01 Xzy
-1 0 0 01 0
, 0 0 1 6-10
9 Lii 1 0 0 zxy 21 L3, -1 0 1 ¥yXzZ
0 1 0 0 0-1
0 0-1 010
10 L3; 1 00 ZIxJ 22 L, -1 0 0 ygxz
0-1 0 0 0 1
0 0-1 010
11 13, -1 0 0 ZXy 23 Li, 1 0 0 yx1Z
010 0 0-1
0 0 1 0-1 0
12 Ly -1 0 0 zXY 24 Lig 1 0 0 ¥xz
0-1 0 0 0 1
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Dpy ¥1 0 0
[L,L)=foae J+] 01 0 ). (51)
A<p2 0 Oil

Before considering the effect of the different symmetry elements of crystal and sample in detail (Sec. 3.4
to 3.6), the symmetries of the Euler angle space induced by identical equivalencies will be briefly discussed.

3.3 Symmetries of the Euler Angle Space due to Identical Equivalencies

As shown in Sec. 2.3 the matrix elements gg may assume the same values for different sets of Euler
angles ¢, ¢ ¢,. Since the rotation between the two frames C and S is completely defined by the matrix g,
different sets of Euler angles leading to the same matrix are called identically equivalent orientations.

Such identically equivalent orientations are defined by the equation
8 (p:° ¢° 0,°) = g(p1 ¢ 92). (52)

It is easy to recognize that the solution of this equation which is given by Eq. (20) can be expressed as a
linear transformation of the form of Eq. (46)

01° m 1 00 "N m
e=19¢ J=f 0})+f0o-1 0 ¢} =10 ]tF e (53)
‘pg my 0 0 1 "2 w

This means one has in the Euler angle space a mirror plane Py perpendicular to the axis ¢ in ¢ =0
superimposed by a translation Ay; = m, A¢ = 0 and Ay, = w, i.e. one has a glide-mirror plane. Since Eq.
(52) can be derived from Eq. (45) by setting g, = g = E, Eq. (53) can also be written in an operator
notation of Eq. (48) as

Eid
[E,E]={ 0 ) +F. (54)
4
As also pointed out in Sec. 2.3, further solutions of Eq. (52), i.e. further identical equivalencies, are
obtained by translations by multiples of 2 parallel to each of the axes ¢y, ¢, v,. As can easily be
recognized and is indicated in Fig. 11, this leads to a family of glide-mirror planes perpendicular to the
¢-axis in ¢ = km with translation components (2k; + 1)7 and (2k, + 1)7 parallel to the axes v, and ¢,

with k, k;, k, being integers. Thus the symmetries induced by the identical equivalencies imply a division
of the Euler angle space into equivalent regions. These can be chosen in different ways. Here the range

H={0<¢ <27, 0<¢<m 0<g, <27} (5%)

(Eq. (42) and Fig. 11) is chosen as the basic range and will be refered to as asymmetric unit (c.f. /7/).
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3.4 Symmetries of the Euler Angle Space Induced by the Cubic Crystal Symmetry

Now let us con51der the effect of the cubic crystal symmetry. Using the form of writing given by Eq. (51)
the elements L}y, and Ly, give /7/,

T 1 0 0

T
@ [ El={rn}+]0-1 0]= + LY ; (56)
™ 0 0-1
70 1 0 0 0
(D (Lo, El={ 7m0 J+{o 1 o)=1 0o }+E
/2 0 0 1 72

Combinig I and II on the basis of formulae (49): leads to

s
(I) [Lip * Lggy» E1 = [Lig, Bl * [Logy, E1=| m | + L3 . (57)
72

The resulting symmetry elements for the range H of the Euler angle space are shown in Fig, 12 a—c. One

recognizes that L2 loo induces two-fold screw axes L + (Ap; = m) parallel to ¢, with a translation vector
of Ay, = 7 and the coordinates

By these axes a point a is brought into the position b (Fig. 12d).

The Lfm axis induces a translation vector Ay, = n/2, that is, a periodicity of n/2 for the angle ¢, (Fig.
(Fig. 12 b). This transiation converts a pomt a into the position a’ and b into b’.

Combined, the two elements L 100 and L 001 introduce a family of two-fold screw axes L + (Aypy = M)
having the coordinates ¢° = /2, cp2 0, 1r/4 2nl4 . 871/4 which transform the point b back into the
original position a. Thus these symmetries [LIOO’ E)} and [Lom, E}] allow the region H to be divided into
2 » 4 = 8 symmetrically equivalent subregions. Here mainly the subregion
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H={0<¢, <27, 0<¢<7/2, 0< ¢, <7u/2} (58)

(Fig. 8) will be considered.

The remaining three-fold axis L3, causes a non-linear transformation which cannot be expressed by
elements of space symmetry in the Euler angle space. It causes a quasi three-fold screw axis parallel to
@1 having the coordinates ¢° = arc cos (1/v/3), ¢3 = n/4 (Q® in Fig. 13).
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Q) b)

Fig. 13:
Position and effect of the quasi-screw axis Q3 induced by the three-fold crystal axis: a) in the subspace H';
b) in the subspace H®

It effects that a point lying on this axis is shifted along this axis by Ap; = 120° or Ap; = 240° and that
a point lying beside it (i.e. having the coordinates ¢, v, #* ¢°, ¢‘2’ is displaced screw-wise into two
other positions ¢}, ¢', v3 and ¢}, ¢", ¢3. The new coordinates ¢', ,, ¢", ¢5 as well as the shifts

Dpy = ¢y — ¢y and Ag) = ¢] — ¢, depend only on the coordinates ¢, ¢;, but not on ¢;. Thus a segment
parallel to ¢, remains parallel to ¢, and conserves its length at this transformation (Fig. 13).

This transformation described by the quasi-three-fold axis divides the range H' into three symmetrically
equivalent parts. It thus follows that the cubic crystal symmetry induce into the orientation space H -
2+ 4« 3 = 24 symmetrical equivalences for orientations, thereby dividing the range H into 24 basic
ranges.

There are many possible choices of surface limiting the basic regions which all are plane except those
which follow from the three-fold axis. A simple possibility is to divide the range H' into three right prisms
of height ¢, = 2#. Their cross section in the plane perpendicular to the ¢, axis is shown in Fig. 14, where
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the three basic areas are indicated by different types of hatching. Thus for cubic single crystals one of the
3 prismatic regions would be needed for representing every possible orientation once and only once.

P /2
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1
11—
/2 4 Fig. 14:
c . 508 Division of the subspaces H' and H into three symmetrically
1ecos2P; equivalent subspaces by the three-fold crystal symmetry.

3.5 Symmetries of the Euler Angle Space in the Case of Orthorhombic Sample Symmetry

Now let us consider orthorhombic symmetry for the sample and thus the effect of the elements LND and

LRD They induce symmetries into the Euler angle space which are indicated in Fig. 15 for the range H
17}

0 0 m
av) [E, Lip] = + o 1 o]= +E (59)
0 0 0 .1 0
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(V) I[E, LRD] 7|+ 0-1 0O m )+ L%
m, 0 0 1 m (60)
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: : ', || o : : ‘o sample symmetry. Fig. 15 d illustrates
T ) 1 L | T S | b2 L.b the transformation effected by these
¢

oy, o&pezno cp elements,

One recognizes that the axis LND induces into the orientation space the translation Acp, = m, i.e. the
periodicity 1r for y; which transforms a point a into the position a’. The element LRD induces a two-fold
screw axis L o t (Anpz = 7) having the coordinates ¢° = 7/2, ¢, = 17/2 3n/2. It transforms a into the
position b and a' into b’. It can easily be seen that the elements LND and LRD introduce a division of the

range H' into yet another 2 - 2 = 4 symmetrically equivalent subregions with intersection planes perpendi-
cular to ¢, at the points ¢; = n/2, m, 3n/2.
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Interesting is the combination with the crystal symmetry elements. The translation Ay, = & generated by
the axis LIZ\ID transforms the two-fold screw axis L2 + (Ap; = 7) introduced by the element Lioo into an
ordinary two-fold axis L:;‘ This also follows fromWEqs. (49) and (57):

, 0
(VD [Lie * Loos» Lip] = [Liso * Loy Bl * [E, Lipl ={ 7 J+ Lg. (61)
2

Similarly, with Egs. (57) and (60), lelD leads to a translation in the y,-direction and a two-fold axis
parallel ¢:

0
(VID [Lig Loor> Lkpl = [L30 * Loor, Bl * [E. Lgpl={ 0 ] + Lg. (62)
f2
Finally, the combination of LIZ\ID and wa results in
m
(VIID [Li * Loors Lip * Lrpl = [Liw * Loors Lip] * [E; Lgpl = | 0 | + Lg. (63)
72

This gives a family of two-fold axes parallel to ¢ having the coordinates ¢] = 0, /2, 27/2...;
¢ =0, n/4, 2n/4 ...

As already pointed out, the transformation introduced by the three-fold axis L?u of the crystal symmetry
cannot be described by space symmetry elements in the Euler angle space. It introduces, however, some
two- and one-dimensional symmetries within special planes and along special lines. One finds in the planes
g, =2 (n =0, £1,%2..)

¢ = ¢ 0

[Lgm : Lin, LIZ‘ID]%,: nmf2 ={ = + LM, (64)
¢t =m2—¢ 72

ie. in these planes there is a line parallel to ¢, at ¢ = @/4, which can be called a mirror line M,
Furthermore, along the lines (called ) parallel to ¢, at ¢ = 0, v, = 0, #/2 and ¢ = /2, v, = 0, 7/2 one
has

™ ' Fid
(L3 * Loor» Lyp * Lrpl ={‘Pxe =3 —%} = (5) + P (65)

i.e. along these lines at v, = n/2 points are situated which can be called mirror points LP. Further mirror
points along the axis Q% (¢ = arc cos (1/+/3), ¢, = 7/4) follow from

[Loor * Lico * Lin L%\ID ’ L2RD]Q3 = {‘P? = k'g - ‘P1} = (g) +1F (66)

and are situated at ¢, = %7 %(7 =0,21,+2..) *. In the above, the operators LM and LP have the

meaning

* The points on Q3 at ¢, = yn/2 are situated on two-fold axes and cause the same symmetry operations along the line Q3
as these axes, Thus, in contrast to the other mirror points along Q3, these ones are no true additional symmetry elements,
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LM =((1) _(1)); LP = (—1).

The description of symmetries in the Euler angle space given in this section is complete within the range H.
These symmetries, however, give no possibility of transforming of orientations from the range 0 < ¢ < 7
considered here to the neighbouring ranges —7 < ¢ < 0 or 7 < ¢ < 27. This possibility is obtained only
by combining the symmetries induced by the rotation axes with those induced by the glide-mirror plane
and given by Eq.'(54). Using Eq. (54) and /7/ it can be shown that in the present case the translation

Apy = m and Ay, = 7 introduced by the axis L;D or L?,O,, respectively, reduce the glide-mirror plane into
a simple mirror plane:

1r 0

This mirror plane is perpendicular to the axis ¢ in ¢ = 0. Considering also the translations 27 parallel to
the axis ¢ leads to a family of mirror planes perpendicular to the axis ¢ in ¢ = kn (k =0, £ 1, £2..)).

Recapitulating, we find that the symmetries of the cubic system of the crystal and the orthorhombic
system of the sample induces into Euler angle space symmetries corresponding to linear transformations
which are listed in Table 3.5. The symmetries 1 to 4 divide the H region into 2 < 4 + 2 « 2 = 32 symmetri-
cally equivalent subregions. One of them,

H ={0<p, <7/2,0< ¢ <7/2,0 < g, <7/2} 67)

having the form of a cube with edge length 90° is depicted in Fig. 16 with the outlined symmetry
elements. Due to the three-fold axis L},, in the crystal’s symmetry, the subregion H® becomes divided
further into three symmetrically equivalent parts denoted in Figs. 14 by the numerals I, II, III.

/2

Fig. 16:
Presentation of the symmetry elements in the
subspace H°® of the Euler angle space.
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Table 3.5: Symmetry elements in the Eulers angle space for different sample symmetries (in the triclinic
and monoclinic case only the true space symmetries are listed, i.e. Mirror lines and mirror

points are omitted).

Triclinic

Orthorhombic

1. translation Ay, = 7/2

0 ¢l = ¢
0 J+E ¢t =9¢

/2 o =9 + /2.

2. two-fold screw éxis

g o =7+ ¢
2 = —_—

T +Lso, =19

/2 o5 =12 — ¢,

3. glide-mirror plane

m &=t
01+ P¢ ¢t =—¢
0 ng = ¥z
Monoclinic

1. translation Ay, = 7/2

0 90? = 1
0 }+E ¢° = ¢
2 5 =@ + 72

2. two-fold screw axis
n i =ty
( T |+ L;1 =719
/2 ¢§ =72~ ¢
3

two-fold axis

0 ¢ =— ¢
0 )+L; ¢°=¢
2 &K =72 — ¢

4. glide-mirror plane

T K=+
0 +P¢, ¢t = —¢

0 5 = ¥2

1. translation Ag; = 7

m =t
O}+E ¢° =9
0 w5 = v

2. translation Ay, = 7/2

0 o =
0 J+E ¢¢t=9¢
nf2 8 = + 72

3. two-fold axis

0 0§ = ¢
m |+l =19

/2 0§ =72 — ¢

4, two-fold axis

T o =T — @
0 J+L; ¢°=¢
2 5 =72 — ¢,

5. mirror plane

0 ‘P?=‘Pl
0} +P ¢t =—¢
0 W5 = ¢

6. mirror line

0 ¢ = v
( 2) FIM ge=m2 — ¢
af & =0
2
7. mirror point
i =712 — ¢
(m/2) + IP ¢t =0, /2
¢ =0, 72
8. mirror point
¢§ = kn/3 — ¢,
(n/3) + 1P #° = arc cos 1/A/3
¥ = m/4

k=0,1,2..)
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3.6 Symmetries of the Euler Angle Space in the Case of Lower Sample Symmetry

In the following some cases shall be briefly discussed for which the cubic crystal symmetry is retained,
but the sample symmetry is less than orthorhombic. If, for example, the sample is a single crystal, its
symmetry (i.e. also that of the pole figure) is given in general by the triclinic group 1 containing only the
inversion 1. Only if the crystal is oriented in such a way that symmetry axes of the crystal are parallel

to ND, RD oder TD, a higher sample symmetry is obtained. A crystal in cube orientation {001} (100) or
Goss orientation {011} <100 possesses the orthorhombic, or a crystal in the brass rolling orientation
{011} (211) the monoclinic sample symmetry.

For triclinic sample symmetry it is nessessary to use the subregion H' (Eq. (58), Fig. 8) instead of H°.
Since for each single crystal orientation H' contains three symmetrically equivalent positions (which have
distances > 7/2 in ¢; /7/) and since H' can be divided into 4 regions of the size H°, only 3 of these 4
regions would contain such a position. This means not all crystal orientations would be contained in the
range H® used for polycrystals. If, however, it is allowed to rotate the crystal by 180° around RD, TD or
ND, one can always manage to have one position in H’. In these cases one can use H° also for the pre-
sentation of single crystal orientations. In other cases, e.g. if the orientation relationship with respect to a
second crystal is considered, it might not be allowed to think the first crystal being rotated. Then the
larger region H' must be used.

In the case of uni-directional rolling (e.g. of sheets or tubes) monoclinic sample symmetry is obtained. One
has here the symmetry group m characterized by the inversion I and the two fold-axis Lrp- As shown in
Sec. 3.5, this axis causes 2-fold screw axes parallel ¢, in the Euler angle space situated at ¢, = n/2, 37/2
and ¢ = n/2 (Eq. (60)). This leads to reduction of the range H' into two parts of witch one is given by

H" ={0 <o <m, 0<¢, ¢ < %} (68)

In combination with the elements induced by the cubic crystal symmetry, this axis gives ordinary two-fold
axes parallel ¢ situated at ¢; = 0, 27 and ¢, = n/4 (Eq. (62)).
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4. REPRESENTATION OF ORIENTATION DISTRIBUTIONS IN THE EULER ANGLE
SPACE

4.1 The Orientation Distribution Function (ODF)

For a random orientation distribution the density of orientation points in the (linear) Euler angle space
would come out not to be constant but would change proportional to 1/sin ¢ /8/. For the purpose of
representing orientation distributions, however, a function f(g) must be defined in such a manner that

f(g)dg is the volume fraction of orientations in the element dg and that in the random case

f(g) = const. = 1. This is fulfilled by introducing for the volume element *

1,
dg:‘é;r‘{sm‘l’ dy, d¢ dy, (69)

2w
with _ff(g)dg= fj
0 0

s

1.
f(g) 3.7 e de;dodey, =1 (70)

DO ey b0

f(g) is commonly denoted as orientation distribution function (ODF). The density Pyxy7 (@, 8) of the
poles {XYZ} at the point a, § of the pole figure and the density Rg; (7, 6) of the sample axis s; at the
point vy, & of the inverse pole figure can be obtained from the ODF by integration:

2
Pyyz (@ B) = % Of £(g) dwyyz (71
1 2
Rg(r,8) = 5= [ f(® dwy (72)
0

Here is wyyy and wg; the angle of rotation around the axis{ XYZ} or s, respectively.

For representation of the ODF in the case of orthorhombic sample symmetry mostly the subregion H°
(Eq. (67)) is used although this region generally contains each orientation 3 times. The use of the region
has the advantage that it has no curved surfaces. The 3 subranges denoted as I, II and III which contain
each orientation only once can be recognized in Fig. 14 and 16. In the radial cuts ¢, = constant (which
are the radial cuts in Fig. 9), their boundaries appear as lines ¢ = constant which are shown in Fig. 17.

It can be seen that best suited for studying the details of the orientation distribution is range I, since it is
the largest range, since it is limited by only one curved surface and since it changes its dimension only
little with changing ¢,. For ¢, = 0° and 90° it extends over 0 < ¢ < 45° and for ¢, = 45° over

0<¢ <547

The ODF is commonly displayed by contour lines in sections ¢, = const or ¢; = const. The sections are
positioned mostly in distances of 5° from each other. Examples of ODF’s displayed in this way are given
by Fig. 17 ({236} (385) texture) and Fig. 18 (cube texture {001} (100)). Both types of ODF’s are
observed as recrystallization texture of f.c.c. metals. Fig. 17 also demonstrates the appearance of a maxi-
mum of the ODF in the three basic regions of H°!

* This follows directly from the condition for the function I (¢, ¢, v,)
JIT£@) 1 de, d¢ do, = [fff(gg) 1 dy, dody,

with g, being any rotation. Togehter with Eq. (70) this condition leads to I = sin ¢/8x°,
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Fig. 17:

Presentation of an ODF consisting of a single component around the ideal orientation
{236} {385) in the range H® of the Euler angle space. The orientation density is
presented by contour lines in sections ¢, = constant taken at ¢, = 0°, 5°, 10° etc.

The maximum appears three times (Pkj, Pkyy, Pkyyp) corresponding to the three
symmetrically equivalent subspaces indicated here by the dashed and dashed-dotted lines.

4.2 Distortion of the Euler Angle Space Near ¢. = 0; Texture Components

Let us here consider the plane ¢ = 0 of the Euler angle space. For the point ¢; = ¢ = p, = 0 all three
crystal axes [001], [010] and [100] are parallel to the sample axes ND, TD and RD, i.e. this point des-
cribes the cube orientation (001).[100]. Since for ¢ = O always sample coordinate ND and crystal coordi-
nate are identical, the orientations in this plane are given by rotations of the cube orientations around ND.

In the plane ¢ = O of the Euler angle space a peculiar degeneracy occurs. While, in general, an orientation
is represented in the Euler angle space by a point, in the case ¢ = 0 it is represented by a line. This
follows from the matrix Eq. (19) which for ¢ = 0 simplifies to
cos (g1 + ¢2) sin(g; +¢2) O
8(01 $va)gp = | —sin(ps + )  cos(ps t9)) O ). (73)
0 0 1
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One recognizes that in this plane an orientation is described not by one pair of angles ¢,, ¢,, but by all
pairs for which the sum ¢, + ¢, = constant, i.e. by — 45° lines in the plane ¢ = 0. This can be seen also
directly from the definition of Euler angles. Since for ¢ = 0 ND and [001] are identical, the two rotations
y; and @, can no longer be separated and only the total rotation ¢, + ¢, determines the orientation,

As example let us consider the cube orientation ¢; = ¢ = ¢, = 0. By application of Eq. (19) one finds the
symmeirically equivalent orientations which turn out to be the seven other corners of the cube of Fig. 16.
Additionally, however, the cube orientation is also given by the — 45°-lines in the plane ¢ = O which are
running through the cube corners situated in this plane, i.e. in particular by the line ¢; + ¢, = 7/2 which
runs between the corners ¢, = 0, ¢; = 7/2 and ¢, = w/2, ¢; = 0. For this reason, the intensity along this
line is always constant. This can be seen in Fig. 18 where a cube texture is shown. With increasing y,, the
maximum moves along the line ¢ = 0 from ¢, = 7/2 to ¢, = 0 without changing its height. In contrast to
this, the symmetrically equivalent positions in the plane ¢ = w/2 are not degenerated, i.e. with changing ¢,
the maxima situated at the comers at ¢ = 90° do not shift but decrease in height, as also can be seen in
Fig. 18.

%
Z N\~ \= N\ =
o————— e ]
N RN N A
&/ N\ N\ N/
N\ N4 N4 &
7 7 7 >~

A4 =7 \Z AL

——————————— e Fig. 18:
Presentation of the ODF of a
cube texture {001} {100) in the

N A R\ V7 manner described at Fig. 17.

Obviously such a degeneracy is obtained for all orientations in the plane ¢ = 0, i.e. for those formed by
rotation of the cube orientation around ND. E.g. for the orientation (001) [110] one has ¢; + ¢, = /4
which means that it is presented by all points on the — 45°line going from ¢, = 0, ¢; = 7/4 to ¢, = 7/4,
¢y = 0. (The other symmetrically equivalent orientations {001} (110) are given by the {0100, } -values
{45,90,0} and {45, 90, 90}).
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This degeneracy at ¢ = 0 is the reason for a strong distortion of the Euler angle space also for values

¢ # 0. This can be seen best by considering all points in the Euler angle space which from a given point
have a constant desorientation. (This is the smallest angle of rotation by which, independent of the axis
of rotation, two orientations can be transformed into each other,) These points form a surface which, how-
ever, does not assume a shape of a sphere but, in the general case, a shape similar to that of an ellipsoide.
Particularly in the plane ¢ = O where an orientation is given by a —45°-line, one has only two other
orientations with a given desorientation which form two lines paralle]l to the first one. At ¢ # 0 an orien-
tation is given again by a point, but this degeneracy still has the effect that for small values of ¢ ellipsoids
are obtained which are strongly stretched out in the — 45° direction.

Fig. 19:

3-dimensional presentation of the three symmetrically
equivalent components of the orientation {123} {634) in
the range Hg. The surfaces around the ideal orientation
characterize a constant desorientation of 10°, The
coordinates of the ideal orientations 1, 2 and 3 are

v15 @0, 1=1{59.0, 36.7, 63.4}, {27.0, 57.7, 18.4} and
52.9, 74.5, 33.7}, respectively.

Fig. 19 gives an example for the surfaces corresponding to a 10° desorientation from the three symmetri-
cally equivalent orientations {123} (634). The ideal orientations 1, 2 and 3 are situated at ¢ =36,7°, 57,7°
and 74,5°, and one recogunizes that the ellipsoids are stretched the more the smaller 0.

Often, in good approximation, the ODF can be considered as being superimposed by ,,isotropic
components”, i.e. by orientation accumulations the density of which decreases from a maximum at an ideal
orientation depending only of the desorientation (e.g. this accummulation may form of a three-dimensional
Gaufl type distribution in the desorientations /9, 10/). In such a case the contour lines correspond to
surfaces of constant desorientation and thus have the same shape as above discussed for the ellipsoids. This
shows up e.g. in Fig. 19 and also 17. It leads there to the fact that the maxima in the three symmetrically
equivalent ranges of H® look very different although they represent the same orientation distribution.

The degeneracy in ¢ = 0 is not the only reason for the deviation of the surfaces of constant desorientation
from that of a sphere. For example the metric of the orientation space resulting in the factor sin ¢ in
Eq. (69) leads to a distortion in ¢-direction. These questions, however, shall here not be discussed further.

4.3 Meaning of Special Lines and Planes in the Euler Angle Space

In order to be able to better visualize the orientation relationships occurring in the ODF, the meaning of
some simple features of the Euler angle space should be kept in mind. For this purpose it is often useful
to consider the cylindrical type of orientation space (Fig. 9).

The range H°® is given there by the quadrant indicated by full lines. The sections ¢y = const, used in Figs,
17 and 18 appear here as radial sections paralle]l to the cylinder axis. With the definition of the Euler
angles (Sec. 2.3) in mind, the meaning of some special lines and planes can immediately be realized.
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It directly follows from the definition of the Euler angles that, with respect to the sample system S, the
direction [001] is determined, only by the angles ¢;, ¢. This means the lines parallel to the ,-axis at
fixed ¢y, ¢ indicate the different rotations around a fixed [001]-axis. For {y;, ¢} = {0 to 90°, 0} this
[001] axis is parallel to ND, for {0, 90°} parallel to TD and for {90°, 90°} parallel to RD. (For ¢ = 0°,
of course, the rotations are around [001] as well as ND.)

Vice versa, with respect to the crystal system C, the direction ND is determined only by the angles ¢, ¢,
so that lines parallel to ¢, at fixed ¢, ¢, indicate the rotations around a fixed ND. Since ND is given by
the Miller indices {HKL}, these lines indicate also a rotation around a fixed crystallographic direction
[HKL]. Here the values ¢, ¢, ={0,0 to 90°} correspond to [HKL] = [001], {90°, 0} to [010], {90°, 90°}
to [100], {45°, 0} to [011], {54.7°, 45°} to [111] etc. (c.f. Fig. 9). In Fig. 20 the lines for all values

HKL < 3 are compiled and on these lines the orientations corresponding to values UVW < 3 are marked

/11/.

One further recognizes that the lines running parallel the ¢-axis at fixed ¢;, ¢, indicate the different
rotations around a fixed axis lying in the rolling plane forming the angle ; to RD as well as in the plane
{001} forming the angle ¢, to [100]. Thus for ¢; = O one has rotations around a fixed RD, for ¢, = 90°
around a fixed TD, for ¢, = 0 around [100] and for ¢, = 90° around [010]. If RD is given by the Miller
indices [UVW], for ¢; = O one has rotations around the crystallographic axis [UVW] (which is determined
by ¢,). The line determined by the values {¢;, p,} = {0, 0} corresponds to rotations of the cube orientat-
ion around RD or [100], {0, 90°} to such around RD or [010], {90°, 0} to such around TD or [100]
and {90°, 90°} to such around TD or [0 1 0].

4.4 The Multiplicity of Orientations

The fact that, due to symmetry of crystal and sample, a given orientation possesses symmetrically equi-
valent orientations in the asymmetric unit H of the Euler angle space (Eq. (55), Fig. 8) is denoted as
»multiplicity” of this orientation. As shown above, in the case of cubic crystal and orthorhombic sample
symmetry this multiplicity is 96. This, however, is correct only for a general orientation. If by symmetry
elements of the sample a certain orientation is transformed within itself, some (in general i) of these equi-
valent positions fall togehter so that for such a special orientation the multiplicity is reduced to 96/i.

In the here mainly considered case of cubic/orthorhombic specimen/sample symmetry, always two
symmetrically equivalent orientations fall togehter if they are situated on the rotation axes L?pl or Lé,
the mirror plane Py, the mirror lines IM or the mirror points LP. As can be seen from Fig. 16 and from
Table 3.5 where these symmetry elements are listed, all these special orientations are characterized by a
(100> or (110)-axis lying either in ND, TD or RD. This means that the multiplicity is reduced to

96/2 = 48 for all orientations for which one of the 3 sets of Miller indices { HKL}, (UVW) or (QRS) is
given by (100} or (110).

In the intersection points of two of these symmetry elements the multiplicity is reduced again by a factor
of 2 resulting in a multiplicity of 24. This is the case also for the mirror points on the edges parallel to
¢, of the cube (Fig. 16), since, at the same time, these points lie on a mirror plane for ¢ = 0 or on a
two-fold axis (for ¢ = 90°). (The mirror points on the line Q®, also the ones being situated on two-fold
axes, have only the multiplicity 48, since along the line Q* the symmetry operations of the mirror points
and these axes are identical.) As can be seen in Fig. 20, these points with a multiplicity of 24 are the
orientations {001} <100) (100, {001} <1105 <110y, {011} (100} (110} and {011} (110) <100). (It is not
possible to have only two of the sets {HKL}, ({UVW) or (QRS) given by (100) or (110}.)

The multiplicity is rather important for the interpretation of textures. For example, let us consider a tex-
ture consisting of ,,components” in form of pronounced maxima of the ODF. Supposing that their volume
fraction and scattering width would be equal, a maximum situated at such a special orientation would
possess i times the height of a maximum situated at a general orientation. In such a case i different
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Fig. 20:

Positions of the orientations (HKL) [UVW] with [H, K, L, U, V, W| < 3 in sections y, = constant through the range H°
of the Euler angle space. In the case that the y,-value of such an orientation does not exactly coincide with that of the
¢,~values of the selected sections, the points are inserted in the section with a y,-value closest to the exact one.

maxima which, in the general case, would occur at i different positions (not necessarily all of them inside
H°) will fall on top of each other. Fig. 17 gives an example of a position of the multiplicity of 96
({236} (385)) and Fig. 18 of the multiplicity of only 24 (cube positions {001} <100)).

In the case of cubic single crystals one has triclinic sample symmetry and thus the multiplicity 24. In this
case no special orientations with reduced multiplicity exist. (The symmetry elements are either translations
or screw axes, i.e. elements which do not transform points into themselves.) At monoclinic sample
symmetry the multiplicity is 48 in the general case, but can be reduced to 24 for special orientations.
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4.5 The ODF in Equivalent Regions

As pointed out above, for representing the ODF in the Euler angle space for samples with triclinic, mono-
clinic or orthorhombic symmetry the ranges H', H” or H°, respectively, have to be applied. They contain
each orientation three times. Sometimes, however, it is useful to consider the ODF also outside these basic
ranges. These values can be obtained from the values inside by transformations which directly follow from
the symmetry relationships listed in Table 3.5.

In Fig. 21 (for the triclinic and monoclinic case) and in Fig. 22 (for the orthorhombic case) this is
demonstrated for the ranges neighbouring the above basic ranges by inserting the expressions which give
the transformation from each of these ranges into the basic range. The parts of the Euler angle space
further away from the basic ranges can be transformed into the range shown in Figs. 21 and 22a) by
making use of the identical equivalency due to the periodicity in 2/m of the Euler angles ¢, ¢ ¢,.

4.6 Orientation Transformations and Orientation Relationships

For orientation transformation mostly the rotation parameters v, w are used. If the orientation g is trans-
formed by a rotation around an axis connected with the crystal, the new orientation g’ is given by

g=80 w g (74)
Transformation with respect to an axis connected with the specimen yields an orientation g” given by
g =g 8@ w). (75)

For example, if one inserts v, = 1, Vy = vz = 0 into the matrix (29) and introduces this matrix into Eq.
(74) or (75), g’ and g" represent orientations obtained from g by rotation by the angle w around [100] or
RD, respectively. )

Rotations with respect to a crystal axis are found, for example, at martensitic transformations or at twinn-
ing. For twinning in f.c.c. crystals one has to introduce v = (111), w = 180° and for b.c.c. metals

V= (112), w = 180°. In Table 4.6 for the resulting orientation relationships are compiled. An example for
rotations around a sample axis is the texture change during rolling where often rotations around TD or
RD are observed.

Another application makes use of the transformation
gV, w)=h - g@® w) -+ b, (76)

With h being any rotation matrix, this operation describes a transformation which does not change the
trace of the matrix g, i.e. the sum g;, + gy, + gas. This means that this transformation alters only; the

axis of rotation (from v to v') but not the angle w (Eq. (29)). If h is a symmetry element, then V' means
an axis of rotation symmetrically equivalent to v, and, correspondingly, g(V, w) a transformation symmetri-
cally equivalent to g(¥, w). If, for example, g(¥, w) describes the Kurdjumov-Sachs relationship 90° [112],
then the 90° rotations around all other (112)-axis are obtained simply by applying for h the cubic
symmetry elements given in Table 3.2.
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(p;znlz-\pz case. In case that two different sets of
expressions are listed, the ones in paren-
31T/2 thesis are valid for the monoclinic case.
-Tt/2 0 9 /2 n nsn2 2n 5T/2
Q , ’
Yf=2m+9, 2 . ; Yr=2m- 9 e
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-T2
¢%=- 0
-T/2 0 &Pz /2 T
92912 | 0=¥ s2m | @)= 9,-T/2
T2
¢°=1-¢
'-
a) $y =T/,
mn Fig. 22:
Transformations leading from different
¢°=0-T parts of the Euler angle space into the
\P;=TC 12-9, lg:ss;c range H° for the orthorhombic
31t/2
-T -T/2 0¥ Tm2 T 312 n
P
Qr=@em [ W=-¢ 2y = prsmz| =T -9, o=@ -1 ‘%}2“ -9 b)
@raT/2-, Q'=Tt/2-Y, @ =1/2-,
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Table 4.6: The Millers indices (H'K'L') [U'V'W'] for the four {111}-twins and the twelve {112}-twins of a
given orientation (HKL) [UVW]

111 111 111 111
H -H+2K+2L -H-2K -2L -H-2K +2L -H+ 2K -2L
K' 2H-K +2L -2H-K + 2L -2H-K-2L 2H - K - 2L
L' 2H+2K-1L -2H+2K - L 2H - 2K - L -2H-2K - L
U -U+2V+2w ~-U -2V -2W -U -2V +2W U+ 2V -2W
V' 22U -V +2W -2U -V + 2W -2U -V -2W 2U -V - 2W
W 2U+2V-W -2U+2V - W 20 -2V - W -2U -2V - W
112 112 112 112
H -2H+K +2L -2H-K-2L -2H-X + 2L -2H+ K -2L
K' H-2K+2L -H-2K + 2L -H-2K-2L H - 2K - 2L
L' 2H+2K + L ~2H+ 2K + L 2H-2K+L -2H-2K + L
U -2U+V +2W -2U -V -2W -2U -V + 2W -2U+V -2W
V' U-2V +2W -U -2V +2W -U -2V -2W U -2V -2W
W O2W+2V+ W ~U+2V+ W 2U-2V+W S2U-2V+ W
121 121 121 121
H -2H+2K+L -2H-2X - L -2H-2K + L -2H + 2K - L
K 2H+K+2L -2H +K + 2L -2H+XK -2L 2H + K - 2L
L' H+2K-2L -H+ 2K - 2L -H-2K - 2L -H-2K-2L
U -2U+2V+W -2U -2V - W ~2U-2V+ W -2U+ 2V -W
V' 22U+ V+2W ~2U0+ V +2W ~2U+V -2W 20 + V - 2W
W U+ 2V -2W -U+ 2V -2W - U =2V -2W -U -2V -2W
211 211 211 211
H H+ 2K+ 2L H-2K-2L H - 2K + 2L H+ 2K - 2L
K 2H-2k+1L -2H-2K+ L ~2H-2K -L 2H - 2K - L
L' 2H+K -2L -2H+K -2L 2H - K - 2L -2H-K - 2L
U U+2V+2W U-2V-2w U -2V +2W U+ 2V -2W
V' 2U-2V+W ~2U-2V+ W -2U-2V -Ww 2U-2V-W
W 20+ V -2W 22U+ V -2W 20 -V - 2W -2U0-V - 2W
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Table 4.6: The Millers indices (H'K'L') [U'V'W'] for the four {111}-twins and the twelve {112}-twins of a
given orientation (HKL) [UVW]

111 111 111 111
H -H+2K+2L -H-2K -2L -H-2K +2L -H+ 2K -2L
K' 2H-K +2L -2H-K + 2L -2H-K-2L 2H - K - 2L
L' 2H+2K-1L -2H+2K - L 2H - 2K - L -2H-2K - L
U -U+2V+2w ~-U -2V -2W -U -2V +2W U+ 2V -2W
V' 22U -V +2W -2U -V + 2W -2U -V -2W 2U -V - 2W
W 2U+2V-W -2U+2V - W 20 -2V - W -2U -2V - W
112 112 112 112
H -2H+K +2L -2H-K-2L -2H-X + 2L -2H+ K -2L
K' H-2K+2L -H-2K + 2L -H-2K-2L H - 2K - 2L
L' 2H+2K + L ~2H+ 2K + L 2H-2K+L -2H-2K + L
U -2U+V +2W -2U -V -2W -2U -V + 2W -2U+V -2W
V' U-2V +2W -U -2V +2W -U -2V -2W U -2V -2W
W O2W+2V+ W ~U+2V+ W 2U-2V+W S2U-2V+ W
121 121 121 121
H -2H+2K+L -2H-2X - L -2H-2K + L -2H + 2K - L
K 2H+K+2L -2H +K + 2L -2H+XK -2L 2H + K - 2L
L' H+2K-2L -H+ 2K - 2L -H-2K - 2L -H-2K-2L
U -2U+2V+W -2U -2V - W ~2U-2V+ W -2U+ 2V -W
V' 22U+ V+2W ~2U0+ V +2W ~2U+V -2W 20 + V - 2W
W U+ 2V -2W -U+ 2V -2W - U =2V -2W -U -2V -2W
211 211 211 211
H H+ 2K+ 2L H-2K-2L H - 2K + 2L H+ 2K - 2L
K 2H-2k+1L -2H-2K+ L ~2H-2K -L 2H - 2K - L
L' 2H+K -2L -2H+K -2L 2H - K - 2L -2H-K - 2L
U U+2V+2W U-2V-2w U -2V +2W U+ 2V -2W
V' 2U-2V+W ~2U-2V+ W -2U-2V -Ww 2U-2V-W
W 20+ V -2W 22U+ V -2W 20 -V - 2W -2U0-V - 2W
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APPENDIX

GRAPHICAL CONSTRUCTION OF A POLE FIGURE FROM EULER ANGLES

As shown in Sec. 2.3 the Euler angles transform the sample system S into the crystal system C by a
sequence of three independent rotations. These rotations can easily be carried out graphically in such a
way that only by the usual application of Wulff net (and a sheet of transparent paper) a pole figure is
obtained. The idea of the method is to exchange the sequence of the partial rotations in the total rotation

g (o1 992) = g(v2) - 8(9) * g(wy)

and correct this by the proper choice of the rotation axes.

First the direction RD will be laid in the direction N (,,north’) of the Wulff net. Then, by a rotation by
(p, + ¢,) around the center, RD is brought into the direction R (Fig. 23 a) and the poles in question (in
Fig. 23 a the {111}-poles) are drawn into the sheet in standard position with rexpect to the original
position (filled symbols in Fig. 23 a). Now by a reversed rotation by ¢, a sample axis RD’ is brought into
N, and, by this rotation, the poles (here {111}) are taken into a new position (open symbols in Fig. 23 b).
Subsequently by a rotation by ¢ around N = RD’ the poles are shifted again (into the filled symbols of
Fig. 23 b). Finally by reversed rotation by y;, RD is brought back into N and thus the poles into their
final positions (filled symbols in Fig. 23 c).

i
A

& RD
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Grv1

34, COREC 4003 FARMATY(IH ///11H MATRIX R//)
4004 FORMAT(IN ///11H MATRIX T //)

SUBROUTINE COREC .
DIMENSION T(19,19),TG(19),TR(19) EnD

i 10
CAMMON FEY(17,413,6),R(19,10) '}.2.TWO'DII'1

CHMMON /SET/ IN,INP,LIB,IDUT,LTP,LMB
COMMON JNAT/ HEAD(22) ,ACTC1I0)
CAMMON /P3R/ LMAX,LFMAX
cOMMON /08G/ LIFI,LOK,J1,13
DATA XCOR/3HCOR/
DATA XT/1°T/ XR/1HR/
800 CONTINUE
READ (INP,1004)HKLDF PFM
HEAD(LOK+1)mHKL
HEAD(LOK+2) =D}
HEAD (LOK#3)=DPFM
WRITECIQUT,310U) rb L
READ(INP,1900) O¥F,SR
WRITECIOUT,3200) COR,SR
1F(COR,EQ.XCNE) G TO H64
G0 TO 555
664 CONTINUE
READCINP,1004)GR 0T _
JRITFCIQUT 3300) GK,GT
JRITECIQUT,3500) OF,DFY
JARINT (90, N00uUT/DFE )41 PO 8 IMe1,1P1
T1mINT((Gre,0UGT)/DF)+1 YeS IN(FLOAT(IM=1)*DF*XB)
128INT((GT+,0u01)/PF) ) ou 9 JM=1,4P1
13RINT (90,0001 /DF)+1 7 PLIMIBRIN TH) Y
TF(12=11)665,665 466 P(JPII®O, 5*P(JPT)
665 (CONTINIE LPlmled
ISTRES Do 10 Nei,LPY

TF(SR,EQ MT)ISTur=1 xa(,5«P (1)
IF(SP.Fu, R)ISTREZ XNNufFLOAT(N=1)#DFheXB#2,0

REANDCINP,1UNA) (TR(K)Y,K=1,11) no 11 JMs=2,JP1

WRITECIOUT 40U 1 XaX+COS(FLOAT(JM=1)2XNN) &P (JM)
WeITE(IOUT2000) (TR(K) K=1,11) D{N,TM)=X

READ CINP,1006) (Tu(x),Km12,13) 10 CuNTTHUE

WEITECTOUT 4a002) B CONTInUE

WRITECIOUT ,2000) (TG(K),K=12,13) D 12 N=1,|P1
WRITF(IUUT ra0U3) 12 D(N,TPY )=l 5+0(N,;IPT)

X=D(1.:1)

SUBROUTINE TWODTM
DIMENSION DESCRI(19)
DIMENSION NORC(IR)
DIMENSICN D(18,20),P(20) ACLO2
COMMON FFE/(17,18,4),R(19,19)
cOMMON fSET/ IN,INP,LIB,IOUT, LTP,LM8
COMMON /DAT/ HEAD(22),ACT(10)
COMMON /PAR/ LMAX,LFMAX
COMMON JORG/ LIFI LOK;J,1
DATA WOR/1+s2+5¢4¢5,6+7:8,9:10,11,72,913,14+,15,16,17,18/
EQUIVALENCE (LMAX,L)
EQUIVALENCE (IO0UT,LUD)
XBe), 017653293
DFEHFAD (LUK=1)
DFMaHEAD (LOK)
JP1=aJ
1Piml]
DU 750 JXs1,JP1
750 DESCRICIX)BDFMAFLOAT(UX=1)

<

k0=
DY 11 k=Ku,I1 DO 13 Im=g,IP1
FEADCINP,10U6) (RCK¥K,k),Kxa1,J1) 13 X=X+D(1,1#)

¥E12,.9663706/ (8 0#*X#pFapFM¥XBRXR)
b 201 L2uvm1,1

py 201 L2/=1,J

201 R(L22,L20)mR(L22,L20N)»Y

WRITE(TOUT,2000) (RCKK,K) KKkm1,01)
11 CONTINUE

NG o121 Kml,11

0N 121Ke=1, 1

121 B(KKK)ZR(KK,K)#T® (K) Y xmx
WeITECIOUT,4004) WRITE(LUO,1006)Y
NN 1?7 K=l2,I13 WHITE(LUN,2201) HEAD(LOK=2)
READCINP,1006) (T(KK,K),KKs1,J1) WRITECLUO,3G30) (PESCRICIA) ;dXx=1,0P1)
WRITFCIOUY ,2000) (T(KK,¥), KKkml,J1) pu 20 L20wY, 1

12 CONTINHE ¥YZaNFefLOAT(L20=1)

DU 13 Kele,I3 20 WRITF(LUD,202u) XYZ,(R(L22.L20),122=17,J)
pn 13 KKke1,J1 LhjmL+1

13 TCKK R)STIKE,R)*TG(K) WEITECLUO,T005) (NUR(K) k=1 .LKY)
Xal, 1SRDe2
yeO, TF(DF.EQ.5,) 1SkrO®1
DO 164 Kml2, 119 TF(ISHD En,1) GO TO 712
PO 14 KKk=1,J1 po 7411 I=1,188

711 PFADCLIB)



SPT

XoXeR(KK, K)*T (KK, K)
GOTU(C1462,141,555)ISTR
142 YesYeT(KK k) wwl
GOTO 14
161 CONTINUE
YBY+R(KKsK)wng
14 CONTINUE
XNORMaX/Y
WRITECIOUT,10U7) XNORV
e U
DO 15 Kail,J1
15 X=2XeR(K,1?
YeX/FLOAT(JY)
DO 16 K=1,J1
16 R(K,1)my
GOTO(162,161)
161 CONTIANUE
KKkm[2=1
DO 17 Km=1,KK
DO 17 KAmst1,J1
17 R(KA(K)BR(KA,K)*XM0ORM
pOYE K=12,13
POTE KK=1,J1
18 RIKK,K)=T(KK,K)
GOTU 19
162 KKmI1+1
nd 181 K=kK,I13
DO181 KA®1,J1
181 ROKA(K)BT (KA K)aKNORM
19 CONTINUE
WRITECIOUT,2010) HKL
DO 70 LAY=1,13
70 WRITECIOUT,20U1)(RCLAX,LAY),LAX81,J1)
60 TO 876
555 WRITF(IOUT,1555)
PAUSE 555
60 TO 8UL0
666 WRITE(IOUT,3000)
PAUSE 666
G0 TO 800
876 CONTINUE
LOKaLOK+3
RETURN
1006 FORMAT(3F10,0)
1006 FORMAT(BF10,2)
1007 FORMAT(AH [/ // /48K
w, F13,.6///71)
1555 FORMAT(46H WRONG OR MISSING CONTROL CARD FOR CORRECTION)
1900 FORMAT(A3Z,A1)
2000 VFORMAT(1H /(8F13,3))
2009 FORMAT(1H //(8F13,3))

ISTH

NORMALISATION FROM #CORRECTION# PROGRAM N(Cwm

2090 FORMAT(AWA/////61H CORRECTED MATRIX P FOR FIGURE HhlLe SF8,0/7/
wll)

3000 FORMAT(33H MATRIX R AND T NOT COINCIDE)

3100 FORMAT(1HA////38%X+38H EVIVENCE FOR POLE FIGYRF HKi®,F5.0//

/) -

3200 FORMAT(1H ,25H TYPE OF CORRECTIOM PR3 2%, 01/1)
3300 FORMAT(1H ,26H ANGULAR LIMITS FRe,F6,1:TH 6Yo,b0.1//)
3500 FORMAT(MH ,26H ANGULAR ImNTERVALS RAD=.FPo.1,7H Hoem,Bp,1/717)

4009 (FORMAT(AH ///26H
4002 FORMAT(IH ///26H

CORRECTIONS FOR FATRIX R/Z)
CORRECYIONS FQR MATRIX T//)

710 CONTINUE
DG 14 LMmi,L
L¥P1sLM+1
DG 15 Nm1,LMP1
IF(ISRD,EQ,2) &N TO 713
READ(LIBY A
y=(,0
DG 16 1wv=1,IPY
YRYSA(IM)aD (N, IM)
16 CONTINUE
GO TN 714
713 PFAD(LIB) A
y=0, 0
PO 715 Ihxl,1P1
X=AC1)
YTIaFLOAT(li=1)aDFaxBe?,
DO 17 1se2,LMP1
17 XaX+A(IS)«COSCFLOAT(IS=1)#XT11)
YeY+XeD(N,IM)
715 CONTIWNUE
714 CONTINUE
YeY*7 0898154/ XX
IF(N,NE.1) GO TO 18
Y®Y#0,70710678
18 CONTINUE
FEX(LMyN,LIFI)my
15 CONTINUE
14 CONTINUE
REWIND LI
DO 30 LM=1,L
LT2=2#» M
LMP1I®LMe1
30 WRITE(LUO,2030) LT2,(FEX(LM,N,LIFI), N8d,LMP1)-
RETURN
1004 FORMAT(IHY///// 146N
*F13,6///1)
1005 FORMAT(IHY/// /124K
ﬁt10f10)
2020 FORMAT(1H /(20F6.,5/7))
2201 FORMAT(AM ////31H NORMALIZED POLE FIGURE MKL = ,FS5.0///)
2030 FORMAT(IN /YW ,I10,90F10.4/1H 10X, 10F10,4)
3030 FORMAT(1H /6X:(19F6,1))
END

F.3. COEF

SUBROUTINE COEF

DIMENSTON XK€16,3,8),8(3,18),F1(18,4),DFAC18).,pC(18,3),C(16,3,18)
DIMENSION AACS,3),AQ(3,3) , NRH (&) ,MODHKL(B) (M(17)
DIMENSION NOR(1R)

COMMON FEX(17:18,4),R(1%9,19)

COMMON /SET/ IN,INP,LIB,I0UT,LTP,LMB

COMMON /DAT/ HEAD(22),ACT(10)

COMRKON /PAR/ LMAX,LFMAX

COMMON /JORG/ LIFL,LOK:d.]

DATA P1/12,56037/

TWO DIMENSTIONAL ANALYSIS NORMALISATION WNI=,

MATRIX F EXPERIMENTAL ///1H ,10X,10110/1H ,90x

DATA Non’1:2[3!‘]’,6:?:8:9010f11:*2r13;1‘:15"6,1?.18/
DATA MODWAL/Y0CG%10,191,102,112,122,903,113/
DATA /0o eV e stede10202+2:20342+03+3:3,3/

EQUIVALENCE (LMAX,L)
EQUIVALENCE (ICQUT,LOUT)



124"

99

DO 99 K=1,170
READ(LIB)
READ(LIB) XK
REWIND LIP

WRITE(LOUT,7000)
LIFI=LFMAX

- LOKXmLOK

Ll WY ]

-
LS R

15
14
11

16

83

DO 4 Ks1,LIFI
KimLIFleKe1
LOKX=LOKX=3
NHKmINT(HEAD(LOKX+1))
po 5 KZI1;8
IF(MODHKL(K?) ,EQ,NHK) GOTO §
CONTINUE

NRH(K1)mk2

CONTINUE

2.1 ln

DO 10 LM=2,L

LMP1=LMe1

LMN =M=t

LTL=M(LM)
UsPI/(FLOAT(LM) w4, ,+1,)
DO 11 LT=1,LTL

DO 12 Mi=1,LTL

X=0,

PO 13 I1ue1,LIFI]
KHENRH(IH)
XeXeXKCLMNT LT ) KH)#XKCLMNT M1 ,KH)
AACLT M9)aX»U

DO 14 MMm1,LMP1

AnQ,

b0 15 1H=1,LIFI
KHaNRH(INH)
XwX+XK(LMNY LT s ER)#FEX (LM MM, TH)
B{LT  MM) =X

CONTINUE

IFCLTL.GT.1) GNTO 16
AGCT,1)=1,.0/AAC1,1)
60T0 17

CONTINUE

TF(LTL,GT,2) 60 Tu 83
DETIN®Y 0/ CAACT 1) #AA(2,2)=AA(1,2)%AA(2,1))
AQ(1,1)mDFETIN®AA(2,2)
AQ(1,2)m=DETIN®AA(2,1)
AQ(2,1)m=CETIN®AA(Y,2)
AQ(2,2)=DiTIN*AACT,1)
G0 TO 17

CONTINIE

Q1BAR(T1, 1)

e2mAA(1,2)

Q3mAA(1,3)

Q4mAA(2,1)

a5=AaA(2,2)

Qé=AA (2,

Q?.ﬂﬁ(311)

Q8=AA(3,2)

Q9mAA(3,3)

DETINET 0/ (1*Q5+uP+04#Q8+Q34024Q7%Q6v0X4N5%Q7=Q8#06+01~044Q24Q0)

32

10

33

100

1000
1001
1002
1003

- 1004

1005
1006
1067
1008

1009
2010
2015
7000

«LUFS oF c
*EVIDED wY

DO 32 MMm1,LMP1

WRITECLOUT,1002) MM, (CCLMKT M1, MM) ,DC (MM, M1),M181,LTL)
COMTINUE

WRITECLOUT 41007)(NORCI),I31,LMPY1) .
WRITE(LOUT,1004) (DFA(MM) ,MM31,1LMP1)
WRITE(LOUT,1008) CM,DCM,DYENM,CN

I®Z+CN

CONTINUE

WRITE(LOUT,1N009 Z

WRITE(LTP,2010) ACT

WRITF(LTP,2015) (MEAD(I),1a1,L0K)

pC 33 LM=2,L

LMP1= LM+

LMNY&LM=1

LTL=M(LM)

DO 33 HMM=m1, LMP1

WRITE(LTP,1003) (CCLMNT, M1, ,MM), H1®1,LTL)
IF(LMB.NF.1) GO T9 10u

WRITE(LMB)Y ACT,HEAD

WRITE(LMB) C

CONTINUE

RETURN

FORMAT(1H ///7120H C AND DC MATRICES)

FORMATC(IHY////1H ,7H L = ,16)

FORMAT(1H //1H rI‘G:SX;‘(F15.6rF15.5rEX)’

FORMAT(8F10,4)

FORMAT(1H /3(1H ,BF13,5//))

FORMAT(1H ///1H ,4(33X,12))

FURMAT(1H ///1H !8!:2“”1;Sx:‘(BX:1HCr13¥t2”00;11x))

FORMAT(1H ///1H ,12H DF VECYOR///3¢1H ,8113/))

FORMAT(1H ///1H .9X.6HC-MEAN,1&x.?HDc-HEAN.12!.?HDF-HEIN.1ZX.ZHCNI
*/4F20,5)

FORMAT(AHA S/ /T /1H ,S5X,22HTEXTURE INDEX J = ,F13.5)

FORMAT(10A8)

FORMAT(F10,0,7CAB,2X)/2F10,.0/4(3F10,0/))

FORMAT(IHA///1H ,S4X,12HCOEFFICIENTS/IH 52X, 16C1H) /2171 11K ,5X,0
“HNOTATIONS////1H +SXsS51HC THRFE DIMENSIONAL FUNCTION COE
*FFICTENTS///1H ,5X,23HDC DISPERSIONS C ///1H ,5%X,S3HDF
“F EXPERIMENTAL COEFFICIENTS DISPERSIONS///1H ,SX BOHC=MEAN
“ MEAN VALVE OF c COEFFICIFNTS FNR DEFINITE VALUE
» 0OF L INDEX///AH 45X,Y0HDC=MEAN MEAN VALUE OF bC D
#ISPERSIONS FUR DEFINITE VaLIE OF L INDEX///1H ,5X,90HD
#FeMEAN * EAN VALUE OF nF DISPFRSIONS FNR DEFINITE
* VALUE nf L INDEX///1H s5¥,114HCN SUM OF SQUARE VA

COEFFICIFNTS  FOR
IR NN NN NN NND]

FFFINITE VALUF oF L D

EvD

3.4, POLO

SUBROUTINF POLO

REAL k0

DIMENSION CCS(30?)il(ﬂﬂ):0(1gt1a’cr(13}:~0(15)!ﬁ(1?’ruuﬁ(iajixptao
*,20)

COMMON FEX(17,18,4),R(19,1¢)

COMMON /SET/ IN,INP,LIS,I0UT,LTP,LMB

COMMON /DaT/ HEAD(22) ,ACT(10)

COMMON /PAR/ LMAX,LFMAX

COMMON /ORG/ LIFI,LOK,J,!

DATA pP1/12.56637/

DATA M/0e1410101+2014242:242:342,3,3.3,3%/
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a1

17

20

19

23
22
21

27

28
26

30
29

31

AQ(1,1)EDETIN®(Q5+N0=Ubwqn)
ANC1,2)BDETINY(QE*Q7=N4*QY)
AN(1,3)mDETIN®*(Q4*RR=a5enT7)
AGC2,1)EDETIN*(N32QR=Q24Q7)
AD(2,2)mDETIN*(Q1#Q0=0uZ»Q7)
AO(2,3)=DETIN*((2*Q7=0Q1+Q8)
AO(3,1)mDETINY(Q2#Q6=Q3#0Q5)
AQCZ,2)=DETIN®(Q3*G4=Qi*Q6)
A0(3,3)=DETIN® (U1 ¢QS«022Q4)
CONTINUE

D0 18 MMmi,LMPA

D0 19 MiEl1,LTL

xu(,

D0 20 LT=1,LTL
XueX4AQG (M1, LT)*B (LT ,MM)
COLMNT p MY, HM ) =X

CONTINUF

CONTIMUE

no 21 Ik=1,LIFI

KHmNRHC(IK)

PO 22 Fmal,LmP1

Xe(,

po0 23 Lis1,LTL
KEX+CCLMEY it ifa) e (LN M1, kM)
FACAM, i) =ilwX

CONTTINUE

DO 26 M™M=y, Lnkl

xal,

DO 27 KH=1,LIHI
YSEEXCLM My KH) =4 Y (MM, )
xax+ywsy

YaX/FLOATCLLIFI=LTL)
DFA(MM)=SLRT(A)

DY 2R M1=1,LTL
DCLtM,I*1)eDFACMN)*SORT CAQ (4T, 1) /')
LUNTIAMUE

nuErks(Q,

pritsQ,

CMm(),

Ch=y,

DO 29 Mumi,LMPY
DMEHaDMFM+ARS(DERA(EY))

DO 30 M1=1, LTL
DCHimDCMeALS{DC (%, 1))
XRel( LMNT, l1 1)

CHBCM*ARS (X))

CiimCNeXFwe?

CONTINUE

CONTINUEF
DHMFMaDMEM/FLOAT(LA4+1)
DCMeDPCHM/FLOATC(LM+1)*LTL)
CHaCM/FLOAT((LMe1)#LTL)
crneCM/ (4, 0%LM+1 0)

DO 31 KHe1,LIHI

no 31 I ret,LMP1
FEXCLA, A", KHY=FY (", kH)
L22=2*LM

WRITECLONT,10G1) LH22
WRITE(LGUT,1000)

WRITE (LOUT,1005)(I,181,LTL)

14

21

19

25

40

45
30

L7

1005
1006

1010
1020
1030

DAYA ~NU/, I9H9A2,17# 5641907

DATA NOR"iZtsrftl5if):7iB|9110:11r12¢13p15015t15f1?r15)‘

DATA YB/0,17453293/
ICLIFI NEL,1) GO TO S0

po 14 1ot .307 )
CCSCI)mCNS(YB*FLOAT(I=1))
JNR=1Q

IDR21Y

XP{1,1)u0,

pnh & 182,20

Xxms #FLDAT(1=2)
XP(!,s1)mX)

XPC(1,1)aX™

CONTINUE

b0 21 J=1,100

READ(LIB)

LPIA1=LMAX +1

pn 19 b=1,LPM1

Do 19 I18=1,LPMY

D(K,T7S)m=,0

D0 20 L=2,LHAX

LPimsl+1

DO 25 NB‘IJLP1

RFAD(LIB) A
XeNO(NI®FEEX (LN, LIF1)

D0 25 1s=1,LP1
D(N,IS)ab(h,I8)+X*A(IS)
CONTIUlLE

REWINP L1

D0 30 Ip=1,IDR

INimTp=

xo(,

D0 40 I1S8s=1,LPH1
ID2m(IS=1)%InT+1
XmXeD(MN,IS)*CCSCIN2)
E(N)=X

po 30 Jpsms1,JDR

Y.IO

JB1mlD=y

DU 45 N=1,LPM1

JD2= (N=1)»JD1+1
YsY4E(N)*CCS(JD2)
XPCJID+1,I1D+1)m1 4V
LIP=11+32(LIFI=1)
WRITECIOUTY,1006) HEADC(LIP)
WRITECIQUT,1030) (MOR(N) ,N31,LP1Y)
DO 47 Lm2,LMAX

LPi=L+1

L2m2wl

WRITE(LOUT,1020) L2,(FEX(L.N,LIF1),Nal,LPY)
WRITECIOQUT,1005) HEADCLIP)
WRITECIOUT,1010) ((XP(J,1),J=1,20),181,20)
RETURN

FORMAT(IHAY///35H CALCULATED POLE FIGURE
FORMATC(1H1///49H TABLE F FOR CALCULATED

«F6,0//17)

FORMAT(1H ,20F6,1/1)

FORMAT(IH /1H ,T190,10F10,4/1H ,10X,10F10,4)
FORMATC(1H /1H »10X,10710/71H ,10x.10110)

END '

HKL=,F5,0//)

POLE

FIGURE
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55

14

21

éé

50

1.5. POLV

SUBRUUTINE POLV(IQUAN,JQUAN)
INTEGER HKL

REAL NO

DIMENSIUN (CS(307)

DIMENSIUN AAAC16,18,18)  XK(16,35,8) ., XP(20,20),F1(16,18).,D(18,18),
*E(18) +MODHKL(8), NOC18) /M(17) ,AC40) ,NOR(18)
CUMMON CCS,AAA XK, XP

COMMON /SET/ IN(INP,LIB,IQUT,LTP,LMB

COMMON /DAT/ HEAD(22),ACT(10)

COMMUN /PAR/ LMAX,LFMAX

COMMON /EVD/ CC16:3,18)

DATA YB/U,17453293/

DATA NUR/1r2l3rﬁr5:6:?:819:101?1r12;15:1ﬁ;15:16:1?:151
DATA NO/.398942,17+,.564190/

DATA M/0+1+141+7:241¢2+2:2:2:3:2:3:3:3:+43/

DATA PI/12.56637/

DATA MUDHKL/100,7110,111,102,112,122,103,113/
READCIN,1001) XHKL,XLMAX

HKLsIFIX(XHKL)

LMAXSINTCCXLMAX+,0001)/7¢2,) 3
IFCJUUAN.NE,1) GO TO 55 50
CALL XDATA

CUNTINUE

IFCIVWUAN,NE,T) GO TO 50
DO 14 1=1,307
CCSCI)=COS(YB*FLUATC(I=1))
JDR=1Y

IDR=1Y

XP(141)=0,

DO 8 1=2,20
XK=5,*FLOAT(1=2)
XP(l,s1)=XxX

XP(1,1)=xXX

DO 21 I1=1,1¢0

READC(LIB) 20
READCLIB) Xk :

DO 22 I1=1,19

READ(LIB)

DO 2 L=1.,16

LP2=L+2

DO 2 N=1,LP2

READ(LIB) A

DO 2 I1S8=1,LP¢
ARACL/N,1ISI=AC1S)

REWIND L1B

CONTINUE

PO 5 k2=1,8

IF(MODRKL(KZ) ,EQ,HKL) GU TO ¢
CONTINUVE

KH=K?2 10
DO 11 L=2,LMAX 8
LPI=L+1

Lhr=L=1

LTL=MC(L)

USPI/CFLOAT(L) %4, +1,0)

DU 11 N=1,LPY

1.6. UNKC

SUBRUUTINE UNKCCIQUAN)
DIMENSION BU(16+3,9)/D(9:18,35)
DIMENSION EC(18,35),G6(18)/H(18),SLN(63Y)
DIMENSION XP(20,20),M0(17),AC40)
COMMUN SLN

COMMON /SET/ IN/INP,LIB,IOUT,LTP,LMB
COMMON /DAT/ HEAD(22),ACT(10)
COMMUN /PAR/ LMAX,LFMAX

COMMUN /EVD/ C(16,3,18)

DATA MO/Us1 414101420142, 2:2,2:3,2+3,:3:5.,37/
DATA XPF1/8HF1PR /

DATA B/U,UB7266465/

EQUIVALENCE (LO,I0UT)
READCIN,1V0UU) XPRO,XLMAX,XLF1,XLF2
LMAX=INT((XLMAX+,0001)/2,)
LE1=INTC(XLF1+,0001)/5.)+1
LE2=INTC(XLF2+,0001)/5.)41

CALL XDATA

IFUIQUAN.NE,1) LU Tu SO

DU 3 J=1,631
SLNCJ)=ESINCFLOAT(J=1)#*8)
CONTINUE

LMTO=LMAX/2+1

LMT1=LMAX+T

LMT2=LMAX*2+1

DU 1 MM=1,LMTU

DO 1 N=1,LMTT

DO 1 IS=1,LMT2

DCMM,N,1S)=0,0

DU & J=1,358

READ(LIB)

READ(LIB) sU

DO 2V ItI=2,20
XXSFLOAT(Ik1=2)%5,

XPCIFI 1}=XX

XP(1,IFLl)=Xx

DU 8 L=2,LMAX

MUP=L/2+1

LPI1=L+1

LN1=L=1

LT2=L %2+

LTL=MO(L)

DU 8MM=1,MuP

DO 8 N=1,LP1

X=0,

DU 9 M1=1, .TL
XZX+C(LNT M1, N)*BUCLNT /M1, MM)
IFCNLNE, 1) X=X*1.46142135

READ (LIB) A

DO 10 ISs=1,LT2
DCMM¢NsLIS)ZD(MM/ /N, IS)+X*ACIS)

" CONTINUE

REWIND LIB
IF(XPRO,EQ,HPF1) GO TO 200
WRITEC(LU,1002)
LD2=LMAX/2+1

LMAT=LMAX+T
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LVT

12

11

&7

v

25
20

40
35

1001
1005
1008

1010
1020
1030

x=0,0

DO 12 MI1=1,LTL
K2X+COLNT oMY M) *XKCLNT MY KH)
FICLNT/N)SK*U

CONTINUE

LPI=LMAX+Y
WRITECIOUT +1006) MODHKL(KH)
WRITECIOUT1030) ¢(NORCI),I=1,LP1)
DU 47 L=2,LMAX
LP1=L+1

LP2=L=1

Le=2#L
WRITECIOQUT 1020)
LPMT=LMAX+]

DO 19 N=1,LPMT
DO 19 IS$=1,LPMI
DINgLIS)I=, U

DU 20 L=2,LMAX
LP1=L+1

LN1=L=1

DO 25 N=1,LPY
XENOCN)*FTCLNT N)
DO 25 IS§=1.,LP1
DIN,IS)SDIN,IS)I+X*AAACLNT (N,15)
CONTINUE

PO 30 ID=1,I0DR

1D1=1D=1

DO 35 N=1,LPMI

X=0,

DO 40 IS=1,LPM1
I1Deg=(1S=1)*101+1
XEX+#D(N,IS)*CCSCIDE)

E(N)®X .

DO 30 Ju=1,JDR

YBIO

JD1sJgD=1

LO &5 N=1,LPMI

JDE=(N=1)%JDT+1
YSY+E(H)RCLS(JD2)
XPCJD#T,1D+7)317,+Y
WRITECIOUT,1009) MODHKLC(KH)

L2, CFTC(LP2Z,/N) /N1, LPT)

WRITECIOUT MU0 CCXPCIT) 0 Jd=1,20),121,20)

RETURN
FORMAT(2F10,0)
FORMAT(1HT///30H
FORMATC(IHT// /4%

CALCULATED POLE
TABLE F FOR

* 1107/

FORMAT(1H ,20F6,1//)

FORMAT(IH /14 ,I710,10F10.4/1H ,10X,10F10,4)
FORMATC(TH /1H TUX,10170/1H +,10X,10110)

END

FIGURE
CALCULATED

(110770
POLE

FIGURE

IPS=4
JPS=2
GU TO 300
200 CONTINUE
WRITECLU,TUUS)
LD2=LMAX+1
LMAT=LMAX/2+1
IPs=2 -
JPS=4
500 CONTINUE
DU 100 IF2=LF1,LF2
XPL1+1)=5,#FLOATCIF2=1)
DO 11 N=1,LMAT
Ivs1
DO 12 IS=1,LMT2
X=0,
1=29+9# ]y
DU 13 M=1,LD2
IF(XPRO,EQ.,XPF1) GO TO 40U
K=M
JEN
GU TO 500
400 CONTINUE
K=N
J=M
500 CUNTINUE
LHZIPS*(M=1)* (1 F2=1)414]
13 X=X+D(KsJr1SI*SLNCLH)
E(N,15)=X
Ivsely
12 CONTINUE
11 CUNTINUE
DO 14 'IF=1,19
DO 15 N=1,LMA
Xx=0,
YZE(N,1)
DO 16 15=2,LMT2,2
LHE(IS=1)*(IF=1)+19
LH1s1S*(1F=1)+19
X=X+E(NsIS)*SLNCLH)
16 YEY+E(N,IS+1)*SLNCLHT)
G(N)=Y
19 H(N)EX
DO 17 1F1=1,19
z2=0,0 .
DO 18 N=1,LMAT
LHBJPS*#(N=1)*(]F1=1)+1
18 Z=Z+G(N)*SLNCLH+*18)=H(N)*SLNC(LH)
XPCIF#1,1F1+1)=1,0+2,50662827+2
17 CONTINUE
14 CONTINVUE

WRITECIOUT,1UUS) C(XPCIF,1F1),IF1=1,20),1F=1,20)

100 CONTINVE

RETURN
1000 FORMAT(A8,2x,3F10,0)
1002 FORMAT(1H1///65H

* PROJECTION F2///)
1003 FORMAT(1H1///65H

¢ PROJECTION F1///)
1005 FORMAT(IH1/7///120F06,1//))

END

DISTRIBUTION

DISTRIBUTION

FUNCTION

FUNCTION

OF

OF

THREE

THREE

PARAMETERS

PARAMETERS
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600

7.2 INVA

SUBRUUTINE INVACIQUAN)

REAL NO

DIMENBION MC17),NOCIB)JECD) ) XTC(7) ,UCB) ACLU) , XKKCT1B),T(4y9)
DIMENSION D(Y,18) ,H(16,3),B(16,3,9),AAC16,18,18),XP(20,26)
COMMON T,AA;B,XP

COMMON /SET/ ININP,LIB,IOUT,LTP,LMB

COMMON /DAT/ MEAD(22),ACT(10)

COMMON /PAR/ LMAX,LFMAX

COMMON ./EVD/ C(16,3,18)

DATA NO/U,398942,17¢0,564190/

DATA P1/12,56637/

DATA PI11/3,1415926%/

DATA YB/U,U17453293/

DATA UC1),ul2),UCL)/3%,0/

DATA U(3),u(5),UC6)/3%1,57079653/

DATA XT(1)/8H NORMAL /

DATA XT(3)/8H ROLLING/

DATA XT(5)/BHTRANSVER/

DATA XT(7)/8H CHUOSEN/

DATA M/0s1+01:0141+2:%42:2:/2:2+3:2:3,3:3.:3/

PATA XSTND/BHSTND /
DATA XROLL/BHROLL /
DATA XNORM/HHNORM /
DPATA XTRAN/BHTRAN /
DATA XDIRC/BHDIRC /

EQUIVALENCE(IOUT,LOUT)
READCIN,TUUD) XWAY,XLMAX
LMAX=INT (CXLMAX+,0001)/2,)
IF(XWAY,EQ,XSTND) GO TO 600
IFCXWAY,EQ,XROLL) GO TO 601
IF(XWAY,EQ,XNORM) GO TO 602
IF(XWAY,EQ,XTRAN) GO YO 603
IFC(XWAY,EQ,XDIRC) GO TO 604
CONTINVE

IPINVR2aS

1PINVY®Y

GO 10 666

601 CONTINUE

602

603

604

666

IPINVIa3
1PINVEs3

GO 10 deé6
CONTINUE
1PINVieY
1Plnv2a1

60 Y0 666
CONTINUE
IPINVIeS
IPINV2eS

G0 70 666
CONTINUE
IPINVYEY
IPLNVZERT
READCIN,1001) U(7),Ut8)
U(7)ayBell?)
U(8)evBel(8)
CONTINUE
CALL XDATA
IPCIQUAN.KE,T) GO TO 50
ite25

31

32
50

42
41

Lo

45
40

10

1000
1001
1002

1003
1004
1005
1006

1007

DU 30U L=2,LMAX
LP1=L+1

LMsL/2+1

LTL=M(L)

LN1=L=1

DU 30 MM=1,LM

MM2=2 % (MM=1)+1

b ]

DO 31 MIs1,LTL
X=EX+HOLNT M) *BCLNT M1, MN)

0O 32 IS=1,LP1

D(MM,IS)ED(MM, IS)+X*AACLNT +MMZ2,15)
CONTINUE

LMPIELMAX+1

LMMI =L MAX/ ¢+

DO 40 I=1,11

IP=1e1

DO 41 MM=1,LMM1

X=,0

DO 42 15=1,LMP1

ISPa(IS=1)*1P+1

XZX¢D (MM, IS)*T(ISP)

E(MM)=X

DO 45 J=1,41

Xs,0

JPE =1

DO 4& MM=1,LMM]

MJZ2% (MM=1)%JP+]

XBX+E(MM) *T(MJ)

XPGJ+1, 14121, +X

CONTINUE

CONTINUE

WRITECLOUT 1002) XTLIPINV)
WRITECLOUT»1005) ((XPCJa1)od=10011),121,111)
CUNTINUE

RETURN
FORMAT(A8,2X,F10.0)
FORMAT(8F10,5)
FORMAT(1H1///32H INVERSE POLE
w/l)

FORMAT(1H /1H ,8H THETA =,F10,2//9H
FORMATC(1K /1H ,110,3F10,4)
FORMAT(1H ,20F6,1//)
FORMATC(1HY// /749K TABLE H FOR
¢ A8,11H DIRECTION //)
FORMAT(IH /1H ,10X,3110)
END

FIGURE OF THE ,A8,11H DIRECTION

PSI =,F10.,2//)

INVERSE FIGURE OF THE

7.8. SETS

SUBROUTINE SETS

REAL INDEV

COMMON /SET/ INJINP,LIB,10UY,LTP,LMB
DATA XSET/8HTAPE /
DATA YSET/BHCARD /

DATA ISET/8HMAGB /
Iout=3

LiBs7

LTP=S

LMB=S

READC(IN,8666) INDEV,0UTDEV



671

99

o~

100

200
50

35

60

20

11126

Jimi9

J11220

Y81a5,¢vB

DO 99 1s1,409
TC1)=COSC(YBI*FLOAT(I=1))
DO 2 131,190

READ (L1B)

PO &6 L=2,17

LPisLe®

LN1=L=]

DO &6 N®1,LPY

READCLIBIA

PO 7 ISm1,LPY

AACLNYT N, ISI®ACLS)
CONTINUE

READ(LIB)B

REWIND LIB

XP(1,1)s0,

DF=2,5

DO 100 1m2,26
XP(Y,1)8DFeFLOAT(]=2)

DO 200 J=2,20
XPLJs1)8DFeFLOAT(J=2)
CONTINUVE

DO 10 IPINVSIPINVI,IPINVZ,2
IPISIPINV=IPINV/2
U1s2,#UCIPINY)
U2=2,«UCIPLINV*T)

DO 11 L=2,LMAX
UX=P1/(FLOATC(L)®&,+1,)
LPIsL ¢

LNIisL=1

DO 12 NE1,LPY

XsQ,

DO 13 15=1,LP1
XSX¢AACLNYI N IS)*COSCUT*FLOAT(IS=1))
XKKCN)BX*NOCN)*CUOS(U2#FLOAT(N=1))
LYL=M(L)

DO 16 MI8T,LTL

Xs,0

DO 15 Nsi,LP1
XSXeXKK(N)#CCLNT /M1, K)
HOLNT M1 muXe)X

CONTINUE

WRITECLOUT,1006) XTCIPINV)
IFCIPINV.NE,7) GO TO 55
U{?IsU(7) /Y8

ucBrsu(g)/vye
WRITECLUUT,1003) ULCTI . U(8)
CONTINUE

IRSM(LMAX)
WRITECLOUT,1007) (1,1=1,IR)
DO 60U L=2,LMAX

LN1®L=1

LTLsM(L)

LLe2sL

WRITECLOUT,100&)LL, CHOLNT/MT), M131,LTL)
DO 20 HM=1,9

DO 20 15=1,18

D(MM,15)=,0

IFCINDEV.EW,XSET) INPS4
IFCINDEV.EQ,YSET) INP=2
IFCINDEV,.EQ,2SET) INPs6
1F(OUTDEV,EQ,ZSET) LMB=1
RETURN

6666 FORMAT(AB,2X,A8)
END

19. CAPITE

SUBROUTINE CAPITE(NAME)
COMMON /SET/ IN,INP,LIB,10UT,LTP,LM8B
COMMUN /DAT/ HEAD(22),ACTCID)
COMMUON /PAR/ LMAX,LFMAX

CALL DATEC(XDATE)

IFCINP.NE,6) GU TO 0066
READCINP) ACT.HEAD
LEMAX=IFIX(HEAD(9))
LMAXSINTCCHEAD(10)+,0001)/2)
J121U+3*LFMAX

GO TU 606

666 CONTINUE
READ(INP,6666) ALT
READCINP,6000) (HEAD(J) ,9=1,10)

LEMAX=IFIX\HEAD(D))
LMAX=INTC(HEAD(10)+,0001)/2)
J1310+3xLFMAX
READCINP,6006) (HEAD(J),J4=11,41)
READCINP,6007)

606 CONTINUE
WRITECIUUT 6001}
WRITECIUUT,0002) NAME
WRITECIOUT,6003) dEADCT)
WRITECIUUT,6004) CACTCJ),J=1,10),XDATE
WRITECIUUT,6005) CHEADCJ) +J=34+41)
WRITECLIOUT 6066) HEAD(Z)
RETURN

600U FUORMAT(F10,0,7(A8,2Xx)/2F10.0)

6001 FORMATCIHYI#////1TH 3TK,46HTHREE DIMENSIONAL ANALYSIS OF 1
*EXIURESJ1H J36X GBCIH®) /1 /1H )

6002 FORMAT(1H ,59X,A4,3BH PRUGRAM === VERSION FEBRUARY 1973/1H .56
¥X 68CIH*) /1 /711 )

6003 FORMAT(IH ,48x,18HDATA BLOCK NO, FO.0/1H 48X, 26C1H*)////1H )

6004 FORMATCIH sBX,106CTH*)/1H ,8XsTH* 102X THe/1H s BXeTH®,3XeTUABBX /A
*9, X TH*/1H BX 2 TH*, 102X, TH¥/1H ,8X 106 CTH*)//1H )

6005 FURMAT(IH ,20X,12HMATERIAL JAB+TUX s 1¢HMEASURED PABsT10X s TEHLA
*BURATORY JAB/TH 420X, B8CTH) 122X BCTHY) 122%410C 1 H%) //1H 135X 20HSP
*ECIMEN DATA JSCAB,2X)/1H 35X 14 CTHR)//IH 125X, 39H  NUMBER
«0OF MEASURED PCLE FIGURES +F4.0 46X 19HMAAIMAL L VALUE 1 Fa, 0/
£1H ,27Xs35CIH*) (10X 17CIH*) 7/ /1H 30X, 23HKIND  OF PULE FIGURES:1
*7Xs19HANGULAR STEPS/TH +3UX,23CTH®) 10X, 22C1H*)//1H 439X .50 HKL
*, 21X+ SHD=ALF 15K+ 5HO=BET/ /&4 (H (264X F20.046Xe2F20.0//7) 010 )

6006 FORMAT(3F10,0)

6007 FORMAT(1X) .

6066 FURMAT(IH //1h +10X,10HPROGRAMMER (4X,AB/TH JBX 106 CTIHE)ZIH BX 104
*(AVH®) L0000 01001 E iR )

6666 FORMAT(10A8)

END
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710, XDATA 713. INVE

SUBRUUTINE XDAT- MASTER INVE
DIMENSION MU(17).NOC(18) COMMUN WORK(6545)
CUMMON /SET/ IN/INP,LIB,IQUT,LTP, MB COMMUN /SET/ IN.INP,LIB,IQUT.LTP,LMB
COMMON /DAT/ HEAD(Z2Z),ACTC10) CUMMON /DAT/ HEAD(22),ACT(10)
COMMON /PAR/ LMAX,LFMAX COMMON /PAR/ LMAX,LFMAX
COMMON /EVD/ C(16,3,18) CUMMUN /EVD/ Ct16,3,18)
DATA MO/04+141¢141,2,142,2,2,2,3,2,3.3,3,3y DATA NAME/4HINVE/
DATA NO/142+3¢445/6,7,8,9,10,11,12,13,16,15,16,17,18/ DATA XINIT/BHINIT /+ XEXOD/BHEXOD
LX=LMAX+1 DATA IQUAN/1/
WRITECIUUT,1010)(NOCTIK), IK=1,LX) IN=2
LMAX2=IFIXC(HEAD(10)) /2 777 READCIN,1111) REWQST
IFCINP.NE,.6) GU TU o666 TF(REQST.EQ,XINIT) GO TO 770
READCINP) ¢ IF(REQST,EQ, XEXOD) 6O TO 707
666 CUNTINUE GO YO 777

DU 1 L=2,LMAX2 770 CONTINUE
TFCLLGT,LMAX) GU TO 444 CALL SETS
LN1=L=1 CALL CAPITE(NAME)
LP1=L+1 CALL INVACIQUAN)
LTL=MOCL) lQuaN=2
L2=2+. GO TO 777
IFUINP,EW,6) GO T0 555 707 WRITE(CIUUT,2000)
DU 4 N=1,LP1 sTup

4 READCINPA1001) CLOCLNT MY, N) M2, LTL) 1111 FURMAT(AB)

555 CONYINUE 2000 FORMATCAVRY////1/17//1H ,SO0X,21HTEXTUR NORMAL END/1HY)

DO 5 M1=1,LTL END

5 WRITECIOUT,1100) L2/M1, CUOLNT MY LN G N1, LPT)

1T CONTINUE

444 CONTINUE

1001 FokmAT (8F10, 4) #44, TUNE

1070 FURMAT(IHT//31H MATHI X ¢ COEFFICIENTS Al H G 10X012C1643%) MASTER FUNE
*/TH 410Xx:12C16,3X)7/) CUMMUN WOKK(631)
1100 FURMATCIH 7/1h ,2x,214,12FY,4/1H P10X012FY . 47) CUMMUN /SET/ IN,INP,LIB,IOUT,LTP, Mk
END CUOMMON /DAT/ HEAD(22),ACT(10)
i CUMMUN /PAR/ LMAX,LFMAX

711 PJ NG COMMON /EVD/ C(16,3,18)

MASTER PG DATA XINIT7BHINIT /P XEXUD/BHEXOD
COMMON wOrK(1585) DATA NAME/4HFUNE/

COMMON /SETY/ IN,1%P,LIR,10UT,LTP,LLE DATA TWUAN/T/

CUMMON /DAT/ HEAD(22),ACT(10) IN=2

COMMON /PaR/ LMAX,LFMAX 777 READCIN,1111) REWST

COMMON JORG/ LIFI,LOFK,J,1 IFCREQST.EW,XINIT) GO TO 770

DATA NAMF/GFPING/ IF(REQST.EW, XEXUD) GO TUu 7U7

DATA XINIT/HHINTIY /e XEXOD/BHEXAD GU TUO 777

INa2 770 CUNTINUE

777 READCIN,1111) RFQST CALL SETS

TFCRFQST, - Q. XINJT) 60 Ta 270 CALL CAPITE(NAME)

IF(PFUST, EQ,XEX0D)Y GN Tu 217 CALL UNKCCLIQUAN)

6O TN 777 lQuANE2

770 CONTIWUE GU 10 T7V?T7

LUK=1D) 707 WRITECIOUT,duuw)

CALL SETS STOP

CALL CAPITE(NAME) 11117 FURMAT(AE)

DU 1 LIFI=1,LFHaX 2000 FOURMATCQYHY#/ /7777771 TH SUX,21HTEXTUR NORMAL END/1H1)
CaLL CNRF( END

CaLL TwWon N
1 CRRTTINUE
Cali CCEF
DY 2 LIFIs1,bLFHMAX



1eT

707

1111
2000

777

770

700

707

111
2000

CALL pOLD
CONTINUE

6N TO V7?7

WHITE(TOUT 2000)

IF(LMB.NE.1) €N 1O 3

EMDFILE IMB

RFWIND LMB

CONTINUE

STOP

FURMAT(AR)

FORMATCARA/ /011771 87X, 2YHTEXTUR

END

+.12. POLF

MASTER POLF

COMMON WORK(06275)

COMMON /SET/ INJINP,LIB+IOUT+LTP,LMB
COMMON /DAT/ HEAD(22),ACTC(10)

CUMMON /PAR/ LMAX,LFMAX

CUMMUN /EVD/ C(16,3,18)

DATA XINIT/8HINII /v XEXOD/8HEXOD
DATA XNEXT/BHNEXT /

DATA NAME/4HPOLF/

DATA TQUAN/1/

IN=Z

READCIN,1111) KREQST
IF(REQST.EQ,XINIT) GO Tu 770
IF(REQST.EQ,XNEXT) GO TO 700
1F(REQST.EQ,XEXQD) GU TO 707

GO TO 777

CONTINUE

JUUAN=T

CALL SE1S

CALL CAPITE(NAME)

CONTINUE

CALL POLVC(IWUAN,JQUAN)

IQUAN=2

JQUAN=2

GO TL 777

WRITE(IOQUT,2000)

ST10P

FORMAT (AB)

FORMAT(IHY/ /7417477 /TH ,SUX,2THTEXTUR
END

nORMAL

NORMAL

END/IHY)

END/THT)



aqT

20
12

11

20e

203
201

301

#.15. LIBR

MASTER LIBR

DIMENSION AKCT/,18,18)/ANSC(35,18),BB(16,5,9)XK(16,5,8)
DIMENSIUN A(4LU) BAW(LU) ,XBB(432),ZK(384)

DIMENSIUN MOC(17)/MODHKL(Y)
CIMENSION HELP(ZU)
DATA XBB/&452*0.,0/sZK/584%0, 07

DATA MO/U1414147+2¢1,242+2,2:3,2:3,3:3,3/
DATA MODHKL/TVU,110,111,702,114,1¢2,105,115/
EQUIVALENCE (XBBC1),BBCT1,1+1)),(ZKC1)4XK(1,141))

INP=2

IouTt=3

LiB=7?

DO ¢ J=1,40

Atdr=, 0

BAW(J) =0,

HRITECIOUT,1100)
WRITECIOUT,2000)

00 11 L=1,17
WRITECIOUT,2200)

LP1=L+

DO 11 N=1,LPY
WRITECIUVUT,2200)
READCINP,1000) (HELP(LIS),LISS1,LP1)
DO 111 LIS®1,LP1

AKCL N, LIS)SHELP(LIS)

DO 1¢ I=1,19

X=HELP(1) .
X180,17453293%FLUAT(1=1)

DO 20U IS=3<,LP1
XZX4HELPCIS)*CUSCC(IS=1)#%X])
BAW(I) =X

CONTINUE

WRITECIOUT,1001) (BAW(CI) . I=1,19)
WRITE(LIB) BAW

CONTINUE

WRITEC(IOUT,3000)

DO 201 J=1,8
WRITECIOUT,2500) MODHKL(J)
DO 202 K=1,16

LTLEMO(K+1)

READCINP,1000) (XKC(K,I,d)s1=1,LTL)
DO 2U5 K=1,16
WRITECIOUT,2200)
LTL=MO(K*T)
WRITECIOUT,1001) (XKkCK,sI,d),01=21,LTL)
CUNTINUE

WRITECLIB) XK

DO & J=1,17

WRITECLIB) A
WRITECIOUT,4000)

DO 301 L=1,17
WRITE(IOUT,2200)

LP1sL+1

DO 501 N=1,LPY
WRITECIOUT,2200)

DU 510 IS=1,LP1
ACIS)=AK(L.N,15)
WRITECIOUT,TU01) CACIS) ISS1,LP1)
WRITECLIB) A

CONTINUE

WRITECIOUT,S000)

DU &U1 L=¢,17
WRITECIOUT,2200)

LNIsL=1

LPOL=L/241

LTLEMO(L)

10

411"

300

700

60U
300
U0

1000
1001
1100

2000

2200
2500
s000

4000
5000
6000

DO 4UT ML=1,LTL

READCINP,1UUU) (BBCLNYT ML/ N)/NE1,LPOL)

WRITECIOUT2200)

WRITECIOUUT,1001) (BBC(LN1,ML,N),NS1,LPUL)

WRITECLIB) dB

DO TV J=31,40

ACJI=0,0
WRITECIUUT,6000)

DO Y00 L=2,17
WRITECICUT,2200)
EPIEL#Y

LP2=2x |+

LPs=L/2+1
XJJmFLOAT(2¥L)

DO ¢UU N=1,LP2,2
INK=EN/ 241

DO 200 1S5=1,LPY
ANS(N,IS)=AK(L,INK,15)
CONTINUVE

DU 500 N=2,LP2.2
ANS(N,1)=20,0
XNNSFLOAT(N=1)
XNZBXJJ~XNN
XNSZXJJ+XNN

212 SQRT(XNZ*(XN3+1,0))
ZZ2ESURT(XNI*(XN2+1,0))
DU 300 IS=¢,LP1

ANSCN,IS)=C(Z1*ANS(N+T  IS)+Z2*ANS(N=1,15))/C6 , 0%FLOAT(IS=1))

CONTINUE

DO 40U N=1,LP2,2
ANS(N,1)52,U*ANSCN,1)
-CONTINUE
XESURT(Z2,0/(C2,0*XJJ+1,0))*ANS(1,1)
0O 50U M=1,LpP3
WRITE(IUUT,2200)

V1s1,0

MMEZeM=1

ATSK/ANS (4wM=3,1)

DO 6UU N=1,LP1
WRITECIOUT,2200)
ACESAT*VTI/ANS(L*N=1,1)

DO ruu 15=1,LPe
X1ZANSCIS MM *ANS (IS, N)*A¢
IFCIS=1,EQ,.U)X1=0,5¢X1
ACIS)=X1

CONTINUE

Vizayi

WRITECIOUT,1UVY) C(ACIS), I5=1,LP2)
WRITECLIB)A

CONTINUE

CUNTINUE

CONTINUE

ENDFILE LI

REWIND LIB

PAUSE 999

FORMAT(5F10,6)

FORMAT(IH ,1¢X,8F1£4,6,12X)

FORMATUOIH/ /7710 e 56X 49HCONSTANTS

*CULATIONS) *

FORMATCIHTI////71H 236X, 4BHTABLE
* VALUES //7141)

FORMAT(IH )

0F

TABLES TO TEXTURES CaL

LEGENDREA,S POLYNUMIALS

FORMATCIHA/// /1IN 427X 6HHKL = ,I5///7)

FORMAT(IHY// 7/ 1TH 56X 4BHTABLE
nONS K 11101
FORMATCIHYI// 4/ 71K 263X 33HTABLE
FORMATCINYA////TH 463X 54HTABLE
FORMAT(IHY1///7//1H 435X+ S4HTABLE
END

OF

OF
OF
OF

CuBIC SYMETRICAL FUNCTI

AsLNS COEFFICILENTS/ /1Y)
B,LMIM COEFFICIENTS////1)
ArLMNS COEFFICIENTS////1)





